
About React Explained

About the OSTraining Book Club

React Explained is part of the OSTraining Book Club.
The Book Club gives you access to all of the “Explained” books from

OSTraining:

• These books are always up-to-date. Because we self-publish,
we can release constant updates.

• These books are active. We don’t do long, boring
explanations.

• You don’t need any experience. The books are suitable even
for complete beginners.

Join the OSTraining Book Club today: https://ostraining.com/books.

Use the coupon “reactexplained” to save 35% on your
membership.

https://ostraining.com/books

We Often Update This Book

We aim to keep this book up-to-date, and so will regularly release new
versions to keep up with changes in React.

Advantages and Disadvantages
We often release updates for this book. Most of the time, frequent
updates are wonderful. If there is a change in React in the morning, we
can have a new version of this book available in the afternoon. Most
traditional publishers wait years and years before updating their books.

There are two disadvantages to be aware of:

• Page numbers do change. We often add and remove
material from the book to reflect changes in React.

• There’s no index at the back of this book. This is because
page numbers do change, and also because our self-
publishing platform doesn’t have a way to create indexes yet.
We hope to find a solution for that soon.

Hopefully, you think that the advantages outweigh the disadvantages.
If you have any questions, we’re always happy to chat:
books@ostraining.com.

Thank You To Our Readers
If you find anything that is wrong or out-of-date, please email us at
books@ostraining.com. We’ll update the book, and to say thank you,
we’ll provide you with a new copy.

mailto:books@ostraining.com
mailto:books@ostraining.com

Are You an Author?

If you enjoy writing about the web, we’d love to talk with you.
Most publishing companies are slow, boring, inflexible and don’t

pay very well.
Here at OSTraining, we try to be different:

• Fun: We use modern publishing tools that make writing
books as easy as blogging.

• Fast: We move quickly. Some books get written and
published in less than a month.

• Flexible: It’s easy to update your books. If technology
changes in the morning, you can update your book by the
afternoon.

• Fair: Profits from the books are shared 50/50 with the
author.

Do you have a topic you’d love to write about? We publish books on
almost all web-related topics.

Whether you want to write a short 100-page overview, or a
comprehensive 500-page guide, we’d love to hear from you.

Contact us via email: books@ostraining.com.

mailto:books@ostraining.com

Are You a Teacher?

We hope that many schools, colleges and organizations will adopt
React Explained as a teaching guide to React.

This book is designed to be a step-by-step guide that students can
follow at different speeds. The book can be used for a one-day class or
a longer class over multiple weeks.

If you are interested in teaching React, we’d be delighted to help you
with review copies, and all the advice you need.

Please email books@ostraining.com to talk with us.

mailto:books@ostraining.com

Sponsor an OSTraining Book

Is your company interested in sponsoring an OSTraining book? Our
books are some of the world’s best-selling guides to the software they
cover. People love to read our books and learn about new web design
topics.

Why not reach those people? Partner with us to showcase your
company to thousands of web developers. We have partnered with
Acquia, Pantheon, Nexcess, GoDaddy, InMotion, GlowHost and
Ecwid to provide sponsored training to millions of people.

If you want to learn more, visit https://ostraining.com/sponsor or
email us at books@ostraining.com.

https://www.ostraining.com/sponsor
mailto:books@OSTraining.com

We Want to Hear From You!

Are you satisfied with your purchase of React Explained? Let us know
and help us reach others who would benefit from this book.

We encourage you to share your experience. Here are two ways you
can help:

• Leave your review on Amazon’s product page of React
Explained.

• Email your review to books@ostraining.com.

Thanks for reading React Explained. We wish you the best in your
future endeavors with the software!

The Legal Details

This book is Copyright © OSTraining.
This book is published by OSTraining.
Proper names and contact information are used as examples in this

book. No association with any organization or individual is intended,
nor should it be inferred.

REACT EXPLAINED

REACT EXPLAINED

STEVE BURGE

React Explained Copyright © by Steve Burge. All Rights Reserved.

https://reactexplained.pressbooks.com/

Contents

React Explained 1

Part I. Preparing to React

The JavaScript You Should Know for React Explained1. 9
5 Exercises in Vanilla JavaScript2. 29
Developer Tools for React Explained3. 33
5 Exercises with Developer Tools4. 43
A High Level Overview of React5. 51

Part II. React Explained

An Introduction to React Elements and Components6. 65
5 Exercises in Writing React With Elements and
Components

7. 77

An Introduction to JSX8. 83
5 Exercises in Writing React With JSX9. 99
An Introduction to Creating React Apps10. 103
5 Exercises in Creating a React App11. 115
Props in React Explained12. 119
5 Exercises in Working with Props13. 135
State in React Explained14. 139
5 Exercises in Working with State15. 151
The Component Lifecycle Explained16. 155
5 Exercises with the Component Lifecycle17. 175

xxi

Part III. A React Project

Project Introduction18. 183
Step 1 - Listing Content From State19. 185
Step 2 - Routing and Single Content Views20. 191
Step 3 - Add Content Form21. 199
Step 4 - Flash Messages22. 209
Step 5 - Updating Content23. 213
Step 6 - Deleting Content24. 223
Step 7 - Persistent State with Local Storage25. 227
Step 8 - Authenticating with a Firebase Database26. 229
Step 9 - Adding, Editing and Deleting w Firebase27. 245
Step 10 - Deploying The Project28. 247

Taking React Further [TODO] 249

xxii

React Explained

React is an incredibly popular choice for Javascript projects.
React exists in a large and constantly changing field of JavaScript

libraries and frameworks. However, as it stands currently, React is a
go-to choice for many developers.

Why is React so popular? I would pinpoint three major advantages
for React: simplicity, ingenuity, and being at the right place at the right
time.

Advantage #1. Simplicity

The simplicity of React is that it is a user interface library.
React does one thing and does it well. Unlike some other libraries

such as Angular, which come with much more functionality out of
the box, React does not. It offers you a component architecture for
building user interfaces.

This single focus of React has led to a scenario of “React and
Friends,” where you have to use other libraries to handle things like
routing and advanced state management that may come bundled with
other similar frameworks, like Angular. However, this is not a bad
thing. As my dad used to say:

“Pick a tool that does one thing really well over a tool that
tries to do everything.”

Angular are also great tools. I am actually a big fan of Angular. But
React’s simplicity has allowed it to evolve quickly, while also staying
fairly stable along the way. Although React does have a learning curve,
there is less to learn with React than there is with more complex
frameworks.

We are web developers working in an era of small, focused libraries.
Modern developers pull in small libraries rather than rely on large
frameworks to do everything for us. React fits into this era perfectly.

1

Thanks to React’s simplicity, it can be used in many different
environments.

When React first started, it focused on building web interfaces.
A library called ReactDOM was created to handle all of the DOM

interactions. The core React library was left absent of anything DOM
specific.

A library called React Native was created to help with building
native applications for mobile devices. All of this code was kept out of
the core React library, allowing Core React to work for the web and
mobile devices.

A final example is the newer React 360 library to help with building
VR environments and 360 experiences. Again, we see how the
simplicity of the core React library has allowed it to be used in so many
different environments.

Simple is not the same thing as easy.
Any good developer can appreciate simple solutions that solve

difficult problems in elegant ways. While we can describe one aspect
of React’s popularity as simplicity, we must also recognize the genius
of React behind the scenes.

Advantage #2. Ingenuity

React has some rather ingenious engineering behind the scenes.
React took a fundamentally different approach to handling some of

the problems that confront modern JavaScript developers. The virtual
DOM, Javascript XML (JSX) and one way data flow are some great
examples of this.

One of the clever things React did differently from other
libraries was to create a Virtual DOM.

A common problem in JavaScript development involves making
changes to the Document Object Model, the API for interacting with
HTML via JavaScript. Rather than supply helper functions for
updating the DOM directly, React created it’s own version of the
DOM in memory that you can update parts of without updating the
the entire thing. This proved far more performant than making updates
directly to the DOM. We will go into the Virtual DOM in more depth
in this book, but trust me when I say, it is rather ingenious.

2 React Explained

Another problem JavaScript developers face is managing templates.
Do you create UIs purely with JavaScript? Do you create them partially
in HTML? How much HTML goes in your JavaScript and how
much JavaScript related code goes in your HTML? Once again, React
took a new approach to this with the creation of JSX. JSX looks like
HTML written in our JavaScript, but with the help of build tools,
it compiles down to vanilla JavaScript. This allows you to create UI
components purely in JavaScript, while also having markup that looks
and feels familiar.

It took me a while to get onboard the JSX train. I began
coding JavaScript during the early days of Web Standards, when
combining your JavaScript and markup to this extent was highly
discouraged. However, today it makes a lot of sense to be able to
build your entire UIs from within a JavaScript file without needing
to use actual HTML. I imagine you will also grow to love (or at
least appreciate) JSX. Either way, you will have to admit it is rather
ingenious.

React also took a rather different approach to data flow.
Before React, two way data binding was common. This involved

connecting a piece of data with a UI element so if something changed
in either place, it would be reflected in the other. React changed this
completely and went with a one way data flow model.

With this approach data flows into your app and down through the
components. If a change is made to that data, something is trigged to
re-send the updated data back down through your app. This follows
a model with a single source of truth, while still leveraging event
handlers you’re already familiar with to trigger updates to data. We will
expand on data flow quite a bit in this book, but it is a very clever
model.

Part of the proof of React’s ingenious is that other libraries and
frameworks have adopted many of the approaches that React was
the first to pioneer. However, simplicity and ingenuity alone would
probably not have been enough to make React as popular as it is today.

Advantage #3. Right place, right time
Two important questions developers ask when considering a

React Explained 3

framework are “Who is supporting it?” and “Who is using it?” From
day one, the best answer to both of these questions for React was
“Facebook.” Developers at Facebook created React, and several of the
related libraries, to help support their huge online application.

Being developed at Facebook counts as being in the right place.
Facebook is a huge application that does not have a sign of going

away or switching to another JavaScript framework anytime soon. For
this reason, most developers felt they could rely on React to continue
to receive support and updates for some time to come.

Before React, Angular was probably considered the
leading JavaScript framework. Angular has Google behind it, which
many developers feel they could trust for similar reasons. Vue.js, a
library similar to React, which came out after React largely had a
single developer behind it, Evan You. For this reason, some developers
had a concern that if Evan stopped working on the project it might
not continue to receive the same updates and support, although Vue
continues as a popular alternative to React.

We cannot diminish that being developed at Facebook was a part of
what has allowed React to become so popular.

The timing of React’s release is also crucial.
React came along at a time when Single Page Web Apps (SPAs)

were becoming the standard and more and more complex. Concepts
like component architecture, the virtual DOM, one way data flow,
and JSX were solving problems that many developers had struggled
to address on their own or felt other frameworks did not adequately
addressing. Some of these solutions, like the Virtual DOM, were not
even solutions many developers had ever considered.

React solved some serious problems with simple and ingenious
solutions. On top of this, it wasn’t too difficult to learn. React came
along at the same time as many developers were learning the new
features of ES6 (EcmaScript 2015). So for many, learning “advanced” or
“new” JavaScript and learning React went hand in hand. In fact in the
earliest versions of React, developers shifted from creating components
using the “React” way to an “ES6” way that has since become “The
React” way of doing things.

4 React Explained

That React incorporated an ES6+ approach to writing JavaScript
from the beginning only helped it.

React also entered the scene admits a growingly complex
tooling landscape. I remember early on a lot of folks said they
couldn’t learn React because they would need to learn the command
line and build tools like webpack. This scared a lot of people. In fact
it still does. Many people loved Vue.js because they didn’t need to use
any build tools.

I will interject a personal opinion here: If you want to develop with
JavaScript today, you should learn some basic tools. These include the
command line basics, build tools like webpack, and transpiling tools
like babel. However, you don’t have to be proficient in Linux by any
means, and webpack and babel continue to get easier to configure and
use.

React had to address this issue, and it did so with Create React
App. Create React App allows you to type on line into a command line
tool and get a new React App setup with all the tooling working and
hidden from your view. This way you could focus on learning React,
which is not that hard, and not have to worry about the tooling, which
can be tricky to learn if you are new.

You still have to learn some tooling as you get further along with
React, but only because we are still living in a world where build
tools like the ones we use are still needed. In the future they won’t be
necessary for the same reasons. However, React may still be useful even
after browser support allow us to move away from so many build tools.

Who is Using React?
Before we wrap up our introduction to React, it can be insightful to
look at who in the development and professional world is using React
on projects.

Here is a small, partial list of major projects using React:

• Airbnb
• eBay
• Lyft
• Netflix
• PayPal

React Explained 5

• Reddit
• Salesforce
• Twitter
• WordPress

Several major showcases of using React Native for mobile applications
exist as well:

• Facebook
• Instagram
• Pinterest
• Skype
• Uber
• Walmart

You can tell from this list that React is a trusted library that can build
interfaces for a range of applications. Making the decision to learn
React will serve as a valuable tools, not just for your own projects, but
for potential employment as well.

Let’s Get Ready to React
Hopefully this introduction has helped you understand at a high level
what has made React so popular. We have discussed how React’s
simplicity in design, ingenious engineering and simply being at the
right place at the right time has helped cement it as the JavaScript
library of choice for making User Interfaces with JavaScript. We have
also looked at a few examples of major projects that use React in the
real world.

Throughout the rest of this book we will dig deep into how React
works and how to build applications with it. While we will focus on
building for the frontend on the web, many of the skills you will
learn will also apply to writing React on the server side, for native
applications and even for VR and 360 environments.

So, I hope you are excited to dig in deeper. Let’s get ready to React!

6 React Explained

PART I

Preparing to React
This section goes over important technical skills that will help you
better understand React.

Chapter 1 – “Important JavaScript to Know for React” may be
a review for you or something you come back to for reference more
than once as you learn React. We discuss everything from “What is

an expression?” to “How keyword this and binding works” and “What
.map(), .filter() and .reduce() do.” All of the JavaScript explained in this
section will be used at some point when building with React.

Chapter 2 – “Important Tools to Know for React” gives a high
level overview of the most common development tools used with
React. Although we explain what each tool does individually, these
tools are often used together in one workflow with overlapping and
interlacing parts as we will see later in this book.

Chapter 3 – “A High Level Overview of React” finally introduces
us to React itself. We explain the basic building blocks of React,
show how data flows through a React app, and get you comfortable
beginning to read and write your first React apps.

1

The JavaScript You Should Know for React
Explained

Welcome to React Explained!
In this first chapter we are going to review some aspects of JavaScript

that will help us successfully work with React.
It is becoming easier to use React without a deep understanding

of JavaScript or its related tools. However, it is still not completely
possible, or recommended, for us to take on React without some
background knowledge.

This chapter is not meant as an “Introduction to JavaScript.” For
resources on learning basic JavaScript, please visit the book website
reactexplained.com.

This chapter is designed to introduce 12 characteristics of JavaScript
that are not always well understood. These Javascript features will
likely be at work behind the scenes in most of your React applications.

1. EcmaScript and JavaScript Versions
2. Statements vs Expressions
3. const, let, var, .freeze() and Immutability
4. Template Literals (Template Strings)
5. Arrow Functions
6. Classes
7. How “this” Works in JavaScript
8. Tertiary Conditionals
9. Spread Syntax and Deconstruction Assignment
10. .filter(), .map(), and .reduce()
11. DOM Node Creation
12. Exports and Imports

9

One of the great things about React is that you will find is that a
lot of the code you write is basic, “vanilla” JavaScript. While React,
ReactDOM and JSX provide some helpful shortcuts, we will still find
ourselves writing our own Classes, specifying event handler code,
making API requests, sorting and filtering data, and more. Since we
will do all of this with vanilla JavaScript, the more JavaScript you know
when working with React, the better.

#1. EcmaScript and JavaScript Versions Explained

JavaScript is based on a programming language standard called
EcmaScript. Starting in 2015, the EcmaScript Standards Committee
began an annual release cycle of new updates to the EcmaScript
standard each year. This meant new annual features became available
to JavaScript as well.

New features that were added in 2015 are referred to as EcmaScript
2015. Since EcmaScript 2015 was actually the sixth release of the
standard, you also see it referred to as ES6. EcmaScript 2016 would
be ES7, EcmaScript 2017 would be ES8, etc. While EcmaScript 2015
introduced a lot of new features to the language, later annual releases
tend to just have a few new features each year.

The problem with new EcmaScript features is that although
you can use them in your JavaScript, they may not be supported
in browsers. This gives us two options for using new additions
to the JavaScript language. We can wait for browsers to enable
support for new features. Or we can use transpiling tools (covered in
the next chapter) to convert new JavaScript code into JavaScript code
that browsers already support.

It is also possible to rely on something called Polyfills, small bits
of code that we can add to our projects that add support for specific
features. Depending on the new JavaScript language feature you want
to work with, you may use a transpiling tool, or you may find a polyfill.

For the examples in this book we will rely primarily on our build
tool setup (including a transpiler) to handle and JavaScript features that
do not have strong browser support.

10 React Explained

#2. Statements vs. Expressions Explained

In loose terms, a statement in JavaScript is a block or line of
code that does something. They usually end in semicolons (if you
use them) or appear as blocks within curly braces. The following are
examples of statements in JavaScript:

const title = "Welcome!";
function greet(title) {

console.log(title);
}

In this example above, the first line is a statement, the entire function
declaration is a statement, and the line logging the title is a statement.

Expressions produce a value or are a value themselves. You will
often see expressions on the right side of an equal sign or as a parameter
for a function. In both of these cases, the expressions resolve to values
which can then be assigned or passed as such.

In the example below, we get a form from a page and log out title
and content values when someone submits the form.

const form = document.querySelector('form');
form.addEventListener('submit', displayPost);
function displayPost(event) {

const title = document
.getElementById('title')
.value,

const content = document
.getElementById('content')
.value;

event.preventDefault();

console.log(title);
console.log(content);

}

The expressions here are as follows:

The JavaScript You Should Know for React Explained 11

• The selector document.querySelector('form')
• The parameters ‘submit‘ and ‘displayPost‘
• The parameter ‘event‘ passed into displayPost()
• The selectors document.getElementById('title'
).value and document.getElementById(
'content').value

• The ‘title‘ and ‘content‘ variables when passed in to
console.log()

In each of these cases–selectors, function references, variable names or
strings of text–all return a value. This value in turn can be assigned to
a variable or passed as a parameter into a function.

The other thing about expressions is that they appear as part
of statements. Statements are the full block of code. Expressions are
the part that returns a value. A single statement can also have multiple
expressions.

It will become important to know when you are writing a statement
and when you are writing an expression since JSX only accepts
expressions within its tags.

#3. const, let, var, .freeze() and Immutability Explained

JavaScript has three ways to declare a variable: var, let and const.
var has been around since the beginning of JavaScript and let and
const were added with EcmaScript2015.

In this book we will use const by default, let when const is not
appropriate, and pretty much avoid the use of var. This is a common
approach in the React community.

The table below shows the similarities and differences between the
three.

12 React Explained

The most important thing to know from this table for the purposes of
this book is that the const keyword does not allow it’s value to be
reassigned to another value. However, if the const value is an object
or an array you can still edit items within that object or array.

const name = 'Zac Gordon';
let location = 'Washington DC';

name = 'React'; // Throws error
location = 'Internet'; // Allowed

const ids = [1, 2, 3];
const post = {
id: 1,
title: 'New Post'

};

ids.push(4, 5) // Allowed to add to array
ids.pop() // Allowed to remove from array
ids[0] = 0 // NOT allowed to reassign values

// NOT allowed to reassign object itself
post = { id: 2, title: 'New post' }

// Allowed to add new properties and methods

The JavaScript You Should Know for React Explained 13

post.slug = 'new-post'
// Allowed to reassign properties and methods
post.id = 2
// Allowed to remove properties and methods
delete post.title

If you want to prevent items in an object or array from being changed,
you can use the native Object.freeze(objectOrArray).

'use strict'
const ids = [1, 2, 3]
const post = {

id: 1,
title: 'New Post'

}

Object.freeze(ids) // Freeze the ids array
Object.freeze(post) // Freeze the post object

ids.push(4, 5) // NOT allowed to add to array
ids.pop() // NOT allowed to remove from array
id[0] = 0 // NOT allowed to reassign values

// NOT allowed to add new properties
post.slug = 'new-post'
// NOT allowed to reassign values to properties
post.id = 2
// NOT allowed to remove properties
delete post.title

When we have a variable that we cannot change, the value of it is

referred to as Immutable. A variable that can be changed is referred

to as Mutable. In React development there is a strong pattern of
Immutability, or programming in a way so that once data is assigned, it
is not reassigned. With an Immutable approach, when you need data to
change you would create a copy of it and modify the copied content,
leaving the original content unchanged.

For this reason we use const by default to prevent our data from

14 React Explained

being reassigned. However, remember, if you want your data truly
immutable you will need to use Object.freeze() or an immutable
JS library that does something similar. If for some reason you ever
need to unfreeze an object or array you can use
Object.unfreeze(objectOrArray).

#4. Template Literals Explained
Template literals, also called “Template Strings,” are a special type of
string in JavaScript that allows for including variables within the string.

const name = 'Zac Gordon'
// Logs "Hi Zac Gordon! Welcome :)"
const welcomeMsg = `Hi ${name}! Welcome :)`

Notice that rather than using single or double quotes to wrap our string
value, we are actually using the back tick character (`). The other thing
we see is the pattern of ${variableName} within the back ticks to
reference a variable.

Template literals will also allow you to use line breaks when creating
your strings.

const first = 'Zac'
const last = 'Gordon'
const longMsg = `Welcome ${first}!

we
see

your
last name is ${last}`

In the example above, the spaces and line breaks are saved as part of the
string structure and would appear intact if you logged out the data to
the console. However, if you render the longMsg string to the DOM,
it would appear as one normal string of text with no line breaks.

It is quite likely you will see template literals in React examples and
applications.

The JavaScript You Should Know for React Explained 15

#5. Arrow Functions Explained
Arrow functions, or “fat” arrow functions, are a shorthand for writing
anonymous function expressions in JavaScript.

An expression in JavaScript is something that returns a value. We
often see expressions appear on the right side of the equal sign (=),
which then returns a value to the left side of the equal sign (=) where
we commonly have a variable name.

The anonymous means that our function does not have a name, so it
is usually executed called where it is written or assigned to a variable.

const render = title => console.log(title)
render('New Post') // Logs "New Post"

In this example above we are creating a function expression, passing in
the parameter title and then logging out the title inside of the function
body.

const render = (id, title) =>
console.log(`${id}: ${title}`)

render(1, 'New Post') // Logs "1: New Post"

In the example above we are doing the same thing with two
parameters. Notice when two parameters (or no parameters) are passed
that we have to wrap them inside of parenthesis ().

One line arrow functions will return the value by default.

const render = (id, title) => `${id}: ${title}`
// Logs "1: New Post"
console.log(render(1, 'New Post'))

If you want to break an arrow function into multiple lines, you must
manually return a value.

const render = (id, title) => {
console.log(`Working with ID ${id}`)
return `${id}: ${title}`

}

16 React Explained

Arrow functions have one other important characteristic. They do not
have binding for the keyword this. If you try to use this in an
arrow function it will go outside the current function scope to find
this defined.

This can be helpful if you want this to refer to a class rather than
a method. However, it can be confusing if you are expecting this to
work as it would in a normal function.

In general, React apps use arrow functions where possible, unless
there is a reason not to.

#6. Javascript Classes Explained
Classes in JavaScript are a special type of function. They use prototypal
inheritance, which is different than “classical” inheritance found in
other programming languages like Java.

Classes are often used in React to create components. Usually, you
will not create your own classes, but rather extend default React classes.

Here is an example of how a class may be used in the context of
React:

class Example extends Component {
constructor(args) {

super(args)
this.state = {

message: 'A message in state'
}

}

render() {
return `Message: ${this.state.message}`

}
}

In the example above we are creating a new class called “Example” that
is extending a class “Component” (not shown, but in React core).

The constructor method executes automatically when the class is
instantiated. If a constructor function is not included with a class,
JavaScript will use a default constructor automatically. However, in

The JavaScript You Should Know for React Explained 17

React we commonly need to create a constructor function for our
classes that extend React classes.

The super() function in JavaScript classes does a few things. First
it calls the parent constructor method, which would appear inside
of the Component class. Since we are passing an argument into
super(args) called “args,” this will also be available in the
Component constructor class. The super() function will also make
this available in the constructor method.

We then have a method called render. All classes in React will
have a method called render that returns a valid React element. In our
example we are simply returning a string of text rather than a DOM or
React element.

In many cases we will be able to use functions in our React code,
but there are times when classes are necessary, so it is important you
understand their basic structure.

#7. How “this” Works in JavaScript Explained

The this keyword in JavaScript is a generic placeholder. By default,
in strict mode, this is undefined. this is assigned to the window
object by default without strict mode, however, all of the examples here
we will assume strict mode is enabled (either manually or by a tool like
webpack).

We generally use the this keyword inside of objects, functions and
classes.

Inside an object, the this keyword will refer to the object itself.

const post = {
id: 1,
slug: `post-${this.id}`,
title: 'First post'

}
post.slug // post-1

In the object above we use this.id to refer to post.id. In this
example, this refers to the object itself.

Now let’s look at this with a function. By default this is
undefined in a function. However, we can assign properties (and

18 React Explained

methods) to this manually. In this sense, this is being used similarly
to any other variable, except that as we will be see, it can be
overwritten from outside the function.

function render() {
this.id = post.id
console.log(this.id)

}
render({ id: 1 }) // 1

In the function example above we can see a pattern where we take a
value from a parameter and assign it to a property on this.

function render() {
console.log(this.id)

}
// undefined (or window in non strict mode)
render({ id: 1 })

In the example above we are not doing any manual assigning of this,
so it remains undefined. However, we can leverage the .call()
function in JavaScript to define what this should be at call time.

const post = { id: 1 }
function render() {

console.log(this.id)
}
render.call(post) // 1

The .call() method can be used on any function and simply calls
the function. It is similar to just calling a function with parenthesis, like
render(), except that you can pass a parameter to it that will become
the new value for this. In the example above we are taking our post
object and assigning it to this within the render function, even
though this was previously undefined.

We also have a method called .bind() that assigns a value to this
but does not call the function. We use .bind() when we want to

The JavaScript You Should Know for React Explained 19

set this now, but call it later (possibly more than once) and keep the
value for this we defined.

Here is an example of when you may want to use bind().

const link = document.getElementById('link')
const post = { id: 1, title: 'Hello bind()!' }

link.addEventListener('click',
renderTitle.bind(post)

)

function renderTitle() {
console.log(this.title)

}

By default when we assign an Event Listener in JavaScript it assigns
this to be the target of the event. In this case, this would be
assigned to the link. However, there are sometimes when you want
assign this to something else, like data. In the example above we
change the binding of this from link to the post object.

Certain patterns of writing React use bind() in a similar way when
working with event handlers or other places where this needs to be
explicitly set.

One last reminder here is that arrow functions do not track binding
to this. So, commonly you will see them used when you want this
to refer to something in a higher level of scope rather than the
immediate function scope.

#8. Tertiary Conditionals Explained
Hopefully you are already familiar with conditional statements like
these:

let loggedIn = true
if(loggedIn) {

console.log('Welcome!')
} else {

console.log('Please login')
}

20 React Explained

Tertiary operators, or tertiary conditionals, allow you to write simple
conditional expressions. Since they are expressions they have to return
a value, either in place or to a variable like in the example below.

let loggedIn = true
let message = (loggedIn) ? 'Welcome' : 'Please login'
console.log(message) // "Welcome"

Notice the pattern here of writing your conditional in the parenthesis.
Our conditional statement is just checking to see if something is true
or present. You can write full conditional statements between the
parenthesis, but a common pattern in React is just to check if
something is available.

After the question mark (?) we have the value returned if the
conditional statement is true. After the colon (:) we have the value to
be returned if the conditional check is false.

Once we get into JSX we will revisit using tertiary operators, so it
is a good idea for you to get comfortable with how to write them and
remember the syntax so you do not have to lookup how to write them
each time.

Remember, (conditional) ? ifTrue : ifFalse.

#9. Spread Syntax and Deconstruction Assignment Explained
The Spread syntax in JavaScript allows us to unpack iterable items, like
arrays, into parameters or other arrays.

Here is a basic example of spreading an array into a predefined set of
parameters:

const nums = [11, 22, 33]

function add(first, second, third) {
return first + second + third

}

let total = add(...nums)
console.log(total) // Returns 66

The JavaScript You Should Know for React Explained 21

Here is an example of spreading an array as a parameter where there
are no defined parameters defined.

const postIds = [1, 2, 3]
const newPostIds = [4, 5, 6, 7]

postIds.push(...newPostIds)
console.log(postIds) // Logs 1, 2, 3, 4, 5, 6, 7

You will likely see the spread syntax used with React applications.
The deconstruction assignment in JavaScript allows us to unpack

items in an array or properties in an object and assign them to
variables. This is used when getting data out from an array or object.

const library = {
render: () =>console.log('Rendered'),
save: () =>console.log('Saved'),
update: () =>console.log('Updated'),
push: () =>console.log('Pushed'),

}

const { render, push: notify } = library
render() // Logs Rendered
notify() // Logs Pushed

In the example above we have an object called library. Then later,
we can get just the render and push methods to use in our app. We
can do that using deconstruction assignment: placing the name of what
we want to pull out between curly braces ({}).

We can also rename a method or property during this process by
referencing the correct name, followed by a colon (:), and then the
new name we want to use. Notice how we used this method to rename
push to notify.

You will absolutely see deconstruction assignment used in React
apps, starting with the first lines where you import items from the
React library.

22 React Explained

#10. .filter(), .map() and .reduce() Explained
Although not a hard rule, in general, the React community leans
towards a functional approach to development rather than procedural
or a classical object oriented type approach.

At a basic level this means expect to see functions that create or
return other functions or accept functions as parameters. It will also, in
general, include working to keep our data immutable, as discussed in
the section on const, let, var, .freeze() and Immutability.

JavaScript provides us with three helpful functional methods that we
will see a lot in React code: .filter(), .map(), and .reduce().
.filter() allows us to check if items in an array meet a certain

condition. All of the items that do meet the condition will be returned
in a new array.

let newPosts = posts.filter(post => {
return post.title.includes('React')

})

The example above will look through a collection of posts, grab all
of the post where “React” appears in the title, and then assign all the
matching posts to a new array called newPosts.
.map() allows us to call a function on each of the items in an

array. It will also create a new array incase the function mutates the
data in any way (we do not break our immutability practice).

let newPosts = posts.map(post => render(post))

In the example above we are mapping over all the posts and calling
the render() function on each post. We will see a lot of examples
of .map() like this. It is less likely you will see JavaScript for loops
when using React.
.reduce() takes an collection of items and reduces them down

into one value. A common example of reduce() is finding the
average of an array of numbers.

const prices = [19, 39, 209]
let average = prices.reduce((total,price,index) => {

The JavaScript You Should Know for React Explained 23

total += price
if(prices.length-1 === index) {

return total / prices.length
} else {

return total
}

})
// Logs Average: $89
console.log(`Average: $${average}`)

.reduce() is a little more complicated than .map() and
filter(). It takes a few parameters. The first parameter is referred to
as an accumulator or memory value as it saves the returned value
from each iteration and passes it into the next iteration. This is why we
are able to add price to total in each iteration and it remembers
the total from the last iteration. You will often see this parameter
named something generic like memo.

The second parameter is the name you want to assign to the item
in the iterable that is currently being run through the function. So the
first time, price is equal to 19, second it is 39 and the last time it is
209.

The next parameter is simply the index of the current
iteration. With simple reduce examples you do not need this
parameter. We only need it because we want to check if we are on the
last item in the array.

Within the .reduce() function we are adding the price each
time and then checking to see if we are in the last item of the array. If
we are on the last item we divide by the number of items in the
array and return that value. Otherwise we return the total and keep
iterating.
.reduce() must always return a single value. If you want to have

multiple values, you may want to do a filter instead.
We will use .filter() and .map() all the time in React

applications. Reduce is used less often, but it is the pattern behind the
Redux state management library often used with React.

24 React Explained

#11. DOM Node Creation Explained
If you want to understand what React is doing under the hood, it is
extremely also be helpful to familiarize yourself with how Document
Object Model Nodes are created, nested within one another, and then
added to a page.

function createHeader(post) {
const container = document.getElementById('page');
const header = document.createElement('h2');
const link = document.createElement('a');
const text = document.createTextNode(post.title),

header.classList.add('post-title');
link.href = post.link;
link.appendChild(text);
header.appendChild(link);
container.appendChild(header);

}

In the example above we see the important low level process of using
the DOM API to create element nodes and text nodes, customize node
attributes, and append them to the page wherever the ID of page
exists.

We will never see this kind of code in our React apps. However,
behind the scenes, React is executing code like this in order to create
Nodes for adding to the DOM. For this reason, reviewing and
understanding the example above is helpful for understanding what
React is doing.

#12. Javascript Exports and Imports Explained
Exports and Imports were added to JavaScript with EcmaScript
2015. They allow us to export code from one JavaScript file and import
it into another. React apps are almost always built using exports and
imports.

As of the time of publication, browsers do not offer support for
export or import. So, we will use a tool like webpack (discussed later)
to manage the process of exporting and importing.

The JavaScript You Should Know for React Explained 25

import React from 'react';
import MyComponent from './MyComponent';
import './App.css';

class Example extends React.Component {
render() {

return <MyComponent />;
}

}
export default Example;

The example above is a very common piece of code that will make
sense once we cover creating React components and using JSX.

The part we want to focus on is the first line where we import the
React library by using keyword import followed by the name we
want to assign to what we are importing (can be anything) and then
the name of the package we want to install as it is referenced in our
package.json file. (This should make more sense once we get into
working with real examples).

In the second line import example we are doing the same as line
one, but referencing a file path instead of a package name. This is the
common pattern in React for referencing our own React components
that we build. In this example, our tooling will look for either a file
named MyComponent.js or a directory named MyComponent with
an index.js file inside of it. Doing this type of importing will
become second nature as you get comfortable with React.

In the third line import example we see that we are just importing in
a CSS file. We don’t give it a name, we simply import it. Our tooling
setup will take care of handling the importing of CSS into a JavaScript
file so we don’t have to worry about how this actually works at this
time. We just need to see an example of what importing a CSS (or
SASS) file would look like.

Then we export out our main class using export default. If we
then went to import our Example component using a line like the one
below, we would have access to that class.

import Example from './Example';

26 React Explained

There are some cases where you want a single file to export multiple
items, rather than a single default export like above. This could be
helpful if you were building a helper library or something similar.

const name = 'React';
const ids = [1,2,3,4,5];
function render() {

console.log('Rendered');
}

export { name, ids, render };

Here we are exporting out three separate values. Notice the use of
object deconstruction here. Then in another file we can import the
items we need, also using object deconstruction.

import { name, render: display } from './FileName';

In this line above we have importing the name variable as well as the
render function, but also renamed the render function to display().

As mentioned, you will get quite comfortable with importing and
exporting data when working with React. It is also important to use a
tool like webpack to handle your imports and exports as they do not
work at this time in browsers.

Let’s Practice
Now that we have reviewed quite a bit of JavaScript, let’s do a few
practice exercises to solidify some of the basics we have covered.

We won’t practice everything above, just some of the most
essentials. If you want a bit more of a primer on JavaScript, please
check out the resources on the book’s companion website.

The JavaScript You Should Know for React Explained 27

2

5 Exercises in Vanilla JavaScript

In the previous chapter we looked at a lot of JavaScript theory. In
this chapter we are going to do a few practice exercises with
vanilla JavaScript that will include code similar to what we will see
when we write React apps.

Practice #1 – const, let & freeze
In the React ecosystem we will use const by default and let when
a variable needs to be reassigned. This exercise will help you get
comfortable with when to use each. We also look at .freeze() for when
you need to prevent an object or array from any changes.

In this first practice exercise, create a variable named username that
should not be reassigned. Then create a variable named loggedIn that
can be reassigned. Finally create a post object with an id and title that
is frozen.

Test to see whether you can reassign each of the values (only the
loggedIn should be able to be reassigned).

Log out the variables you created to test if the values are as expected.

Practice #2 – Template Literals
Template literals allow us to write strings with variables inside of
them. In this practice exercise we will create a welcome message
including a two variables for someone’s first and last name.

To do this, create a variable firstName and assign your first name.
Also create one for lastName with your last name.

Then create a template literal that will return “Hi firstName
lastName!”‘

29

This should give you some practice with basic template literals that
are often used in React apps.

Practice #3 – Arrow Functions
Arrow functions are a simplified syntax for writing functions
in JavaScript. They do not track this so we want to be careful using
them, but they are commonly used in simple ways in React apps.

To practice writing an arrow function, rewrite the following
function using arrow function syntax into a new function named
ArrowName.

function MyName(name) {
return (

`<p>${name}<p>`
)

}

There are a few different ways you can write this, but try to do so in
the simplest format you can get to work.
Finally, log out value of ArrowName() with your name as a parameter
to make sure it works.
We will use arrow functions when creating components in React so it
is good to get comfortable with them.

Practice #4 – filter() & map()
We will regularly filter and map over arrays of data when working in
React. This exercise will help you practice both filtering and mapping
over an array together.

First, start with an array of posts like this

const posts = [
{

id: 1,
title: "First post"

},
{

id: 2,
title: "Second post"

30 React Explained

},
{

id: 3,
title: "Last one"

}
];

Then filter through the posts and find the titles that include the word
“post.” Then map through the filtered list of posts and log out the
titles of each post.
If you can, try chaining the filter and the map functions together.
This practice exercise will help you get comfortable with filtering
arrays based on matching conditional statements as well as mapping
over arrays to do something with the data.

Practice #5 – DOM Creation
In this practice exercise we are going look at simple DOM creation
using document.createElement(), document.createTextNode() and
appendChild().

While we will not write any of this type of code in this way when
working with React, it is helpful to understand some of what is going
on under the hood when we using React and JSX.

Starting off with the example index.html file that has a div with an
ID of root.

Then try mapping over an array of posts like this one:

const postsArray = [
{

id: 1,
slug: "#first-post",
title: "First post"

},
{

id: 2,
slug: "#second-post",
title: "Second post"

},
{

5 Exercises in Vanilla JavaScript 31

id: 3,
slug: "#last-one",
title: "Last one"

}
];

postsArray.map(post => {
// Create post markup
// Append markup to posts container

});

While you are mapping you can create markup for a post that
includes an h2 with a link inside it and the title of the post inside that.
So you will have final markup like this:

<h2>First post</h2>
<h2>Second post</h2>
<h2>Last one</h2>

As mentioned, we will not write this kind of code in React because
React has much better methods for us to create markup and UIs.
However, it is still helpful to know how basic DOM creation works
with JavaScript so we can better understand what React does behind
the scenes.

What’s Next?
In these exercises above we practiced some of the helpful JavaScript we
will use when working with React.

In addition to vanilla JavaScript, there are also some common
development tools that will be helpful when working with React.
In the next chapter we will go over some of these tools that help
you write, edit, compile, and debug your React code.

32 React Explained

3

Developer Tools for React Explained

In the previous chapter, we have covered some key JavaScript features
you should know when working with React

Now, let’s turn our attention to talking about tools for React
development.

It is possible to build a React application with only a text editor. But
I would not recommend this approach. A modern Javascript developer
needs to be comfortable with a range of development tools.

In this chapter, we’ll look at some of the common types of tools we
will use when working with React.

1. Command Line Tools
2. Code Editors and IDEs
3. Node
4. Package Managers
5. Bundling Tools
6. Transpiling Tools
7. Local Development Servers
8. React Dev Tools

If you are already comfortable with these tools, you can skip to the
next chapter. However, if some of these tools are new to you, I would
suggest reading through the rest of the chapter to have at least a high
level understanding of each type of tool.

#1. Command Line Tools
Command line tools allow us to execute code by typing commands
into a text based interface called, the command line. Some commands
have equivalents with user interfaces. For example, on a Mac, you can

33

open a file by navigating to the file and type “open readme.md” in the
command line and it will open the file. You can also navigate to the file
in Finder and double click it to open it.

Some commands however, do not have user interfaces. For example,
we will use something called “Create React App.” The code for this
tool requires you to use the command line to interact with it. There is
not an application or window we can open to click a button to “Create
a React App.” Many of the tools we will use with React are built this
way. You have to use the command line to call the commands.

There are, in general, two types of command line tools: stand alone
command line tools and integrated command line tools. Stand alone
tools just offer you a command line. Integrated command line tools
will often give you command line access within another tool, like a
code editor. In the next section we will talk about code editors and
how many have integrated command line tools.

In order to interact with the command line, you need to know some
command line basics. Here are some of the basics you want to know:

• How to navigate to files or folders
• How to list out the content of files and folders
• How to create and delete files and folders
• The basic structure of commands
• How to run some basic commands

If you are not already comfortable with using the command line, I
suggest checking out the site commandlinebasics.com to brush up on
the basics.

#2. Code Editors and IDEs
Along with a command line tool, a Code Editor is one of your most
important tools. Simply put, a code editor let’s you edit code without
injecting unwanted characters or formatting. A word processor or rich
text editor are not tools for editing code and will inject extra characters
and break your code.

Here are some popular code editors:

• Visual Studio Code
• Atom

34 React Explained

http://commandlinebasics.com/

• Sublime Text

These code editors allow for simple code editing. However, they also
come with the ability to be extended via themes and plugins (or
extensions or add-ons). These extensions allow you to do a lot more
with your editor, for example show error hints, formatting help, and
other shortcuts and features.

Integrated Development Environments (IDEs) are powerful code
editors with more features built in out of the box. A popular IDE
for JavaScript development is WebStorm from Jetbrains.

In addition to having more features built in out of the box, IDEs
can also do things like keep track of file names and locations so if you
change a file name somewhere it can automatically update reference to
that file anywhere in your code.

Today the landscape between code editors and IDEs is
blurring. Most developers are quite happy extending tools code editors
and never using an IDE. However, IDEs do have some major benefits
and are worth looking into.

If you have not worked with an IDE before I would suggest
downloading the trial version of WebStorm and checking out the
tutorial at webstormtutorials.com.

#3. Node Explained
Technically, Node is JavaScript that runs on the server. In contrast,
most JavaScript runs in the browser.

While Node is technically a language and not a tool, many of the
tools we will use in this book require Node in order to run.

So, one of the first steps to take when working with React is to
install Node. Most Macs already have Node installed, but you will want
to open your command line tool and check to see if you have Node
installed with the following command:

node -v

If Node is not installed, you can go to nodejs.org and follow the
instructions for downloading and installing Node.

As you delve deeper into working with React you will likely come

Developer Tools for React Explained 35

http://webstormtutorials.com/
https://nodejs.org/en/

across React running on the server side with Node. This is outside the
scope of this book, but if you do continue to explore React Native
then you will actually write React code in Node and not just use it for
development tools.

For this book, make sure that you have the latest version of Node
installed on your computer.

#4. Package Managers Explained
When we build React applications we rely on multiple libraries. Two
important libraries are React and React DOM, which this book covers
in depth. We will likely use several other JavaScript libraries when
building with React.

The best practice for working with JavaScript libraries is to leverage
a package manager like NPM or Yarn. Node Package Manager (NPM)
was the original package manager for JavaScript and it still the most
popular. Although originally named for Node packages, today it
manages frontend scripts for us too. Yarn was created by the folks
at Facebook, who created React, so it is quite popular with React
developers.

A package manager provides several things:

• A way to download a library for use in your application
• A way to update a library to the latest version
• A way to remove libraries from our applications

The popular package managers for JavaScript (NPM and Yarn) give us
a command line interface to do each of these things.

To setup an app for working with NPM, you usually start with
opening that app directory in the command line and typing something
like this:

npm init

This command will take you through the process of creating a JSON
package manager configuration file, often named package.json
(and package-lock.json). This package.json will keep a list of
all packages we have installed as well as the version we are using.

36 React Explained

To install a library we would find it listed on a site like npmjs.com.
This site is the primary resource for JavaScript libraries that you can
install with a package manager like NPM or Yarn.

Once we find the library we can install it using a command like this::

npm install react
yarn add react

This process downloads the library we want, as well as any
dependencies that library has, and saves them to a folder in our
application that it creates called node_modules.

There are generally three different ways to install a package with a
tool like NPM or Yarn.

1. Global: This installs the package for use on your entire
computer, not just for a single application. This is more
common for tools than it is libraries. Globally saved packages
are not bundled with your application code for production.
Instead they just live on your computer.
2. Dependency: This means your application needs this
package to run properly and your build tool should bundle
this package along with your final application code.
3. Development Dependencies: This means your application
(or tooling setup) only needs this package for local
development and the package should not be bundled with
your final source code.

If you are wondering which way you should install a package, don’t
worry! Most packages will tell you the best way to install their library
in their installation instructions.

Then in our application code we can import in these libraries in our
JavaScript using import and the name of the library.

import React from 'react'

In the example above we are importing the React library from our
React package saved in the node_modules folder. The use of imports
only works with a bundling tool like webpack, which we will look at
shortly. However, usually imports require a link to a file path. If a file

Developer Tools for React Explained 37

https://www.npmjs.com/

path is not given, a tool like webpack would fall back to looking in the
node_modules folder for a library called react.

The node_modules folder in a large React application will get
quite large. For this reason, the contents of a node_modules folder is
not usually included when application code is saved to something like
github or the production server.

Luckily, as long as you have a package.json file, you can easily
install all of the necessary packages with the following command:

npm install
yarn install

This wonderful command will download all of the packages listed in
the package.json configuration file into a “node_modules” folder that
will be created if it doesn’t already exist.

For this reason, you will often see “npm install” as the first task
when working with an application that you need to edit. This step is
necessary because when people share source code for applications they
usually do not include the “node_modules” folder or contents.

The node_modules folder is usually not necessary for a completed,
live application either. Using a build tool like webpack will allow us to
take what code we need from our libraries and combine that with our
application code, either in the same file or separate ones.

One last important aspect of working with package managers is that
they allow you to create shortcuts for commands that you commonly
run. A common example is to create a shortcut called “dev” to start
up your development environment. You can then execute this entire
command with the following (much shorter) command.

npm run dev

You will likely leverage shortcuts like this in all of your React
applications. The most common types of shortcuts are for a build
process, development server, testing and other similar tasks like that.

If you have not used a package manager before it is a good idea to
practice setting up a package.json configuration file, installing some

38 React Explained

packages, removing some packages, and trying a basic custom script
shortcut.

NPM has a great set of tutorials to get you up and running that
you can find in the NPM documentation under “Getting
Started”: docs.npmjs.com.

#5. Bundling Tools
Bundling tools take multiple JavaScript files and combine them into
single files.

There are several benefits to using a bundling tool.
First, it is better at this time to make a single request in a website

to a single JavaScript file than it is to make a dozen requests to a
dozen different JavaScript files. This may change with the adoption of
HTTP2, but as of the time of writing, limiting server requests is still a
positive thing to do. With a bundle tool, we can take what was a bunch
of separate JS files and combine them into just one or two files.

The second benefit of a build tool is that they let you use JavaScript
imports and exports. As we mentioned when we introduced imports
and exports, they do not have support in the browser at the
moment. However, bundling tools do know how to work with import
and export.

A bundling tool will create a “dependency map” of your application
based on the use of imports. Then, the tool will combine all of those
files into a single file. It is also possible (although outside the scope of
this book) to break up a single file into several files for convenience or
performance purposes.

In this book we will use the bundlingg tool called Webpack. When
we first start with Create React App we will not even see the webpack
configuration files or code. However, if you create React applications
from scratch or make more advanced applications, you will likely need
to deal with webpack configurations or commands.

#6. Transpiling Tools
Transpilers take code as an input and output converted code. At their
most powerful level, transpilers can take code in one language and
convert it into a completely different language. In the context of React

Developer Tools for React Explained 39

https://docs.npmjs.com/

and JavaScript, a transpiler takes in modern JavaScript and
outputs JavaScript older browsers can support.

I am using the term “modern JavaScript” here to refer to two
things. The first aspect of “modern JavaScript” are features that are
newly available or in development but are not yet supported in the
browser. A transpiler will take code using these unsupported features
and rewrite them in formats that older browsers can support. It does
this by either rewriting our new code completely or including polyfills
that provide the unsupported functionality and leave our code as is.

The second aspect of “modern JavaScript” refers to code that is
included in our JavaScript but not technically part of the current or
planned EcmaScript standard. The best example of this is JSX, which
we will explore at length in this book. JSX is not technically part of
the JavaScript language, but it goes inside of our JavaScript code. A
transpiler then processes the JSX code and outputs working JavaScript
with no JSX.

Since JavaScript continues to evolve, we will likely continue to use
transpilers. In this book we will use a transpiler called Babel. Babel
offers configurations to determine exactly what features you want
transpiled and what browser versions you want to support. It also
offers great default configurations that will automatically support most
new JavaScript features and the latest few versions of browsers.

#7. Local Development Servers
At the most basic level, React will work in a single HTML file opened
in a browser on your computer. However, to make our development
easier, we will leverage a local web server. The webpack bundler we
use along with React provides a great server that can also watch for
changes in our code and automatically refresh the browser.

In addition to the webpack server, several other Node driven local
development servers exist, like http-server. However, for the most part
we will leverage webpack development server when writing React.

When launching or testing your final React app you can usually use
any server that allows client side JavaScript to run. If you have built
additional server side functionality outside of your React app you will
want to use a production server that supports both. Down the road if

40 React Explained

you get into server side React, you will need a server environment that
supports Node.

#8. React Dev Tools
When we run a React app in the browser, there is a lot of information
about our app available that we can explore with a browser extension.
This extension is called React Dev Tools and is available for Chrome
and Firefox.

We are going to assume if you are reading a book on React that
you have already used a Web Inspector tool to explore things like the
DOM, markup, CSS and possibly more.

React Dev Tools adds a new tab to the Web Inspector that shows off
information about your React app. In the graphic above you can see
that we have highlighted a block starting with <HelloMessage … and
what you can’t see is that I changed the Props name property from
“Taylor” to “Randy” and it updated on the page.

With this tool we can interact with, troubleshoot and explore React
apps in the browser. You will likely start to use this tab in place
of the normal Elements tab. Note that you can drag and drop the
placement of the React tab from under the double arrows (>>) where it

Developer Tools for React Explained 41

initially appeared to a more convenient place like on the far left in this
screenshot.

You will want to install React Dev Tools in either Chrome or
Firefox before you get up and rolling with React.

What’s Next?
In this chapter, we took a look at helpful tools we will use when
working with React. If these are new to you, this may seem
overwhelming. Don’t worry, once we get into a workflow, you will
start to feel more comfortable with these tools.

Now, we’re ready to turn our attention to React itself. In the next
chapter, I’ll give you a high-level overview of React’s architecture, data
flow, components and more.

42 React Explained

4

5 Exercises with Developer Tools

Later on in this book we will learn about a tool called Create React App
that simplifies how we use many of the tools covered in the previous
chapter. However, it always helps to have some basic command line
skills and understanding of what is going on behind the scenes with
our JavaScript development tools.

These exercises are designed to help you get comfortable some of the
skills and tools that help our JavaScript development process.

Practice #1
In this first exercise we will practice using some basic commands in a
command line tool.

Open command line tool (like Terminal on the Mac or Cmder for
the PC). Then try to follow along with the following steps from the
command line:

1. Navigate to your root folder by typing “cd ~”
2. Then navigate to your Desktop by typing “cd Desktop”
3. Create a folder on your Desktop by typing “mkdir test-
folder”
4. Navigate into the new folder by typing “cd test-folder”
5. Create a README.md file in the new directory by typing
“touch README.md”
6. Finally, list out the contents of your directory using “ls”

Continue to practice this exercise until you can remember the
necessary commands and get comfortable typing them. This will
ensure you have the basic skills with the command line to use the other
tools we will need.

43

Practice #2
In this exercise we will practice getting a project up and running that
uses NPM for managing the JavaScript packages and libraries we will
use in our projects.

To start, open the “chapt-2-dev-tools/practice-2” directory in a code
editor with a command line tool.

Look inside the package.json file. You should see “moment”, the
popular JavaScript date and time helper library listed as a dependency.

To install moment (and any other dependencies that could be listed
in the package.json file) we need to run “npm install.”

Run “npm install” in the “practice-2” directory and you should see
two things happen:

1. A node_module folder appears
2. A package-lock.json file appears

Navigate into the node_modules folder and you should see “moment”
listed along with a number of other dependencies.

If you can get this far it demonstrates an important skill: the ability
to setup a project in your development environment that uses NPM to
manage dependencies.

In order to use dependencies in our code we will have to use a
bundler tool, like webpack, which we will do in the next exercise.
However, now when a project you want to use says in the setup
instructions, run “npm install,” you know what to do.

Practice #3
In this exercise we are going to look at how to use the webpack
bundling tool so we can use imports and exports in our JavaScript code
as well as combine multiple JavaScript files into one final bundled file.

To start, open the “chapt-2-dev-tools/practice-3/starter” directory in
your code editor.

Open the package.json file. It should look similar to the previous
practice exercise.

Run npm install to get moment, React and React DOM installed.
Then we want to install webpack and the webpack command line

44 React Explained

helper library as developer dependencies. This means they are loaded
to our local computer but not saved in our final bundled code like
moment.

Run “npm install webpack webpack-cli —save-dev”.
Once it is done running you should see “webpack” and “webpack-

cli” listed in package.json as devDependencies.
Next, we need to create a “webpack.config.js” file and place the

following inside:

const path = require("path");

module.exports = {
entry: "ENTRY_PATH",
output: {

filename: "OUTPUT_FILENAME",
path: path.resolve(__dirname, "OUTPUT_DIRECTORY")

}
};

Then change the ENTRY_PATH to “./src/index.js” to point our
main JavaScript file.

Change OUTPUT_FILENAME to “main.js” and
OUTPUT_DIRECTORY to “dist” to tell webpack to save the final
bundled file to “dist/main.js.” This is the file our index.html file links
to.

Now, we need to setup our webpack commands.
Open the package.json file and after line 4 “description” add the

following:

"scripts": {
"start": "",
"build": ""

},

This will give us two new commands for our project:

• npm start
• npm run build

5 Exercises with Developer Tools 45

Inside of these we can call webpack cli commands.
Update the scripts with the following webpack commands:

"scripts": {
"start": "webpack --watch --mode=development",
"build": "webpack --mode=production"

},

Now, running “npm start” will get webpack to watch our files for
changes and bundle our code so it is still slightly readable. When we
run “npm run build” webpack will do a one time bundle of our code
into a highly minified format for shipping to production.

Both commands will output the bundled file to “dist/main.js”
Try running “npm start”. You should get some messages in the

command line saying that your code has been compiled. Also, a
“main.js” file should appear in your “dist” folder.

Open the “dist/main.js” file to see a bundled version of our “src/
index.js” file.

Now open the “src/index.js” file and a make a change to the text in
the last line that displays the date on the page. Once you make the
change, you should see the command line tell you that webpack has
rebundled your code.

If you open the “dist/index.html” file in the browser you should see
your changes take place.

Stop webpack from watching your files by typing Crtl + C in the
command line.

Now try running “npm run build.” Once this is complete it should
tell you the bundle was complete and give you the command line
prompt again.

Open the “dist/main.js” file. It should look highly minified. In the
future, if you make changes to your code you will need to run “npm
run build” to get a production bundle of your code open.

This exercise shows you how to integrate webpack with NPM
scripts to bundle our code and allow us to use imports in our code like
we do with the moment library in this example.

46 React Explained

Practice #4
In this exercise we will look at how to add Babel to our project for
transpiling our newer JavaScript and React code.

To start, open the chapt-2-dev-tools/practice-4/starter” in your code
editor.

Install the core Babel libraries:

npm install--save-dev @babel/core @babel/preset-env babel-loader

Then install the Babel libraries for React and JSX:

npm install --save-dev @babel/preset-react

Finally we will install a Babel library for using class field properties,
which is not yet fully supported:

npm install --save-dev @babel/plugin-proposal-class-properties

Now we can set these up in our “.babelrc” and “webpack.config.js” file.
Open up the “.babelrc” file, which controls our Babel configuration.

Update the “presets” and “plugins” with the following values:

"presets": [
"@babel/preset-env",
"@babel/preset-react"

]

This tells Babel to support the latest few versions of popular browsers as
well as support React and JSX. Then update the “plugins” array with
the following:

"plugins": ["transform-class-properties"]

This will allow our class properties to work.
Next we need to setup webpack to make sure that all of

our JavaScript passes through the Babel configurations we just setup.
Open the webpack.config.js file and add a comma to the end of line

8 at the end of the output object. Then after it place the following:

5 Exercises with Developer Tools 47

module: {
rules: [{

test: /\.js$/,
exclude: /node_modules/,
loader: "babel-loader"

}]
}

This will ensure that any file ending with “.js” will passed through our
Babel settings. Anything in the “node_modules” will be excluded from
this, which is good.

To test all of this, run “npm start” and open the “dist/index.html”
in the browser. It should display an h1 saying “Title” and a message
“Posted” with the current date.

If you look at the “src/index.js” file you can see that it is using
moment, React and ReactDOM. We will learn more about what
everything here is doing later in the book. For now we just need
to know that this code would not work if we did not setup Babel
properly.

In the future you may need to setup and use Babel in similar ways to
how we used it here in order to support new features in JavaScript or
related libraries.

Practice #5
In this last practice exercise we are going to setup a server to run our
files, rather than just opening our index.html directly. This will also
allow our tooling to automatically refresh the page whenever we make
changes.

To start, install the Webpack Dev Server with the following:

npm install --save-dev webpack-dev-server

Then open the webpack.config.js after line 8, place the following:

devServer: {
contentBase: "./dist"

},

48 React Explained

This will tell webpack to use our “dist” folder as the root for the server
and load our index.html automatically.
Finally we need to update our npm start command to load the server.
Open package.json and change the “start” command to the following:

"start": "webpack-dev-server --open --mode=development"

This will cause the webpack dev server to launch when we call “npm
start.”
To test this, run “npm install” and then “npm start”.
This should open http://localhost:8080/ in your browser, with our
code running.
If you go into the “src/index.js” file and change the text in the <h1> it
should automatically refresh the page in the browser.
To stop the server, press Crtl + C.
Development servers like Webback Dev Server are very helpful for
building and testing our sites. Remember though that if you want to
have a build of your code to ship to production, you should still run
“npm run build”.

Next Steps
The practice exercises from this chapter can help you get more
comfortable with some of the basic tools and skills we will need for
React development.

However, in a later chapter we will explore how the development
tool, Create React App, combines all of the tools we have looked at
here into one simpler tool.

So, now, let’s turn our attention away from JavaScript and
Development Tools and to React itself.

5 Exercises with Developer Tools 49

5

A High Level Overview of React

In this chapter, we are going to get a broad introduction to React.
As you read the next few pages, you’ll see React code for the first

time. We won’t start writing React in this chapter, but we will see
example code. We’ll take a close look at those examples so we can start
getting into the React frame-of-mind.

The Key Concepts of React
Out of the box, React is a library for building user interfaces.

Although React is a JavaScript library, the interfaces you will build
with React are language-agnostic.

React has companion libraries that enable your interfaces to work
in different locations. React has libraries to make your code work in
the browser, on the server, in native applications and even in 360 and
Virtual Reality environments.

In this book, we focus on working with ReactDOM, the library that
enables your interfaces to work in client-side websites and applications
in the browser. ReactDomServer, ReactNative and React360 are also
libraries you may want to explore for using React interfaces in other
environments.

In addition to providing helper functions for building interfaces,
React’s architecture allows for you to handle interactions with your
interfaces. These interactions can involve event handling, API calls,
state management, updates to the interface, or more complex
interactions.

React does not provide as many helper functions as some JavaScript
frameworks. This is in large part why we call React a library and not

51

a framework. You will still need to write plenty of vanilla JavaScript
when working with React.

React’s Architecture Explained
In programming, a component is an independent, reusable piece of
code. Components are created via a JavaScript function or class in
React.

React uses a component architecture for building user interfaces
and organizing code. The main file for a simple React app may look
something like this.

// Import React and Other Components
import React from 'react';
import ReactDOM from 'react-dom';
import Header from './Header';
import MainContent from './MainContent';
import Footer from './Footer';

function App(){
return (

<div className="app">
<Header />
<MainContent />
<Footer />

</div>
);

}

ReactDOM.render(
<App />,
document.getElementById("root")

);

We can see here a few components in use. <Header />,
<MainContent /> and <Footer /> are all components. The
App() function is a component as well and we can see on the last
line of this example how we can use the ReactDOM library and the

52 React Explained

ReactDOM.render() method to manage adding the UI we build to
a webpage.

If we dig inside of the <Header />, <MainContent /> and
<Footer /> components, we would likely see the use of more
components as well as what looks like HTML markup.

import React from "react";
import Ad from "../Ad";
import logo from "../assets/logo.svg";

export default function Header() {
return (

<header className="app-header">
<Ad />

<h1 className="app-title">Site Name</h1>

</header>
);

}

In this <Header /> component above we can see that we are pulling
in yet another component called <Ad />. Most React applications
contain several layers of component nesting like we see with <App />,
<Header /> and <Ad />.

We also see the use of HTML elements in our React code. This is
possible thanks to a library called JSX, which lets you write “HTML
markup” directly in your JavaScript. Since we are using React to create
user interfaces, and user interfaces on the web involve HTML markup,
this makes sense we would see HTML like elements within our UI
components. We will explore JSX in depth in this book.

If we look at some code from for a simple React app built using
React 360, React’s VR library, the actual components we call would be
different, but the component architecture is still present.

import React from 'react';
import {

Text,
View,

A High Level Overview of React 53

VrButton,
} from 'react-360';

class Slideshow extends React.Component {
// Code removed for brevity
return (

<View style={styles.wrapper}>
<View style={styles.controls}>

<VrButton onClick={this.prevPhoto}>
<Text>{'Previous'}</Text>

</VrButton>
<VrButton onClick={this.nextPhoto}>
<Text>{'Next'}</Text>

</VrButton>
<View>

<Text style={styles.title}>
{current.title}

</Text>
</View>

</View>
);

}

The code above creates several layers of 360 views with some buttons
and text overlaid. While the actual code might not make complete
sense, it should be clear that we have several nested components
representing the view, button and text.

This is a good example because you can see how the same
components are reused in different ways by passing them different
parameters, or what React calls props. Understanding how data passes
through React components is important for understanding the typical
component architecture used for building with React.

React’s Data Flow Explained
React will get and set data at the highest point necessary in a
component hierarchy. This allows data to pass in a one-way direction
down through an application.

54 React Explained

Let’s take a look at this example and imagine some of the types of
data we would need for various components.

function App() {
return(

<React.Fragment>
<Header />
<Content />
<Sidebar />
<Footer />

</React.Fragment>
);

}

Something like the name of the site might need to be available to
both the <Header /> and <Footer />. The main content for
the particular page would need to be passed to <Content />. Some
additional widget data might need to go to <Sidebar />.

function App() {
const siteTitle = getSiteTitle();
const widgets = getWidgets();
const mainContent = getPageContent();
return(

<React.Fragment>
<Header siteTitle={siteTitle} />
<Content mainContent={mainContent} />
<Sidebar widgets={widgets} />
<Footer siteTitle={siteTitle} />

</React.Fragment>
);

}

This convention of making up attribute names and assigning them a
value is how we pass data into a component.

Now the <Header /> and <Footer /> have access to the
siteTitle, the <Content /> has access to the mainContent,
and <Sidebar /> has access to the widgets it needs.

An important note is that this pattern of passing data into a

A High Level Overview of React 55

component only passes the data one level. Components inside of
<Header /> will not automatically get access to siteTitle.

function Header(props) {
return(

<header>
<p>We can see the {props.siteTitle} here.</p>
<PageHeader siteTitle={props.siteTitle} />
<PageSubHeader />

</header>
);

}

You can see here that inside <Header /> we can call
props.siteTitle and have access to that value we passed into it.
However, if we wanted to have access to siteTitle within the
<PageHeader /> component we would have to manually pass that
information down as well.

When a component receives a value as a prop, it should not
modify it.

Props should pass through a component tree as immutable data. This
ensures that any component that references a prop, references the same
value as other components receiving that prop.

The value of a prop should only be changed in the component
that originally set the value of the prop and started passing it down
through the component tree. In our example code above, the <App />
component could change the value of siteTitle, but the <Header
/> or <PageHeader /> components should not.

To understand the flow of how dynamic data gets updated in a React

app involves discussion of state and how event handlers can be passed
as props.

React Component States Explained
As we have learned, data flows down unchanged through components
as props. Data is set at the highest component in the component tree

56 React Explained

necessary for all children components to be passed the information
need as props.

In some cases, this data is received once and does not need to
change. In many cases though that data must remain dynamic and have
the ability to update at any given time and have that update reflected
in all children components.

To keep track of data that changes in React we have a React state
object and a helper function to update the state value.

Here is an example of a counter that would update itself. The value
of the counter is a value that is dynamic within this component and
therefore makes a good instance of when to rely on state.

class Counter extends Component {
state= {

counter:0
};

handleCount = () => {
this.setState({

counter: this.state.counter + 1
});

};

render() {
return (

<div>
<h1>{this.state.counter}</h1>
<button onClick={this.handleCount}>

Count Up!!
</button>

</div>
);

}
}

Now it is important to note that this state is scoped to just this
component. The value of state in counter would not be available to
child or parent components.

A High Level Overview of React 57

So in a more complex example, like below, we would have to pass
the value of count down as a prop into the child element.

class Counter extends Component {
state= {

count:0
};

handleCount = () => {
this.setState({

count: this.state.count + 1
});

};

render() {
return (

<div>
<PageHeader count={this.state.count} />
<button onClick={this.handleCount}>

Count Up!!
</button>

</div>
);

}
}

The <PageHeader /> count prop gets updated every time we update
the state in the <Counter /> component

function PageHeader(props) {
return <h1>{props.count}</h1>;

}

The nice thing about this approach is that anytime state is updated,
a new value will be automatically passed down into any child
components with the value of a prop set to state.

This allows us to have a single point of truth for dynamic data. The
source of truth is the value in state, managed from a single
component. All instances of this value in children components are

58 React Explained

immutable values received as props that should not be changed outside
of this component.

Components that appear above this component in the hierarchy

would not have access to this data as it is only passed down via
props. We see again why we try to set and manage state from
components higher in the hierarchy so that the data is available to
everything that needs it.

There are some other architecture patterns, like higher order
components and the context API, which circumvent needing to
manually pass tons of props through your app. For now though, we
want to make sure we understand this high level overview of how
things generally work before we start taking shortcuts.

Updating Component State from Child Components
Now, what happens when we want to trigger state to be updated from
a child component?

Imagine, for instance, that with the example above we wanted to
have a <Button /> component rather than a hard coded button in
our main <Counter /> component? This is actually quite common in
complex apps.

The solution to this, in the React world, is to pass the event handler
function that updates the state with setState down as a prop. Then it
can be called from any child component, but the action will take place
in the original component that set the state and has the ability to update
it as well.

If you are not familiar with passing functions as parameters, it is
completely valid vanilla JavaScript.

Once the event handler is called from the child component, state will
be updated in the parent component, the new value of state will be
passed down through the component hierarchy via props.

Here is an example of what that would look like.

class Counter extends Component {
state= {

count:0
};

A High Level Overview of React 59

handleCount = () => {
this.setState({

count: this.state.count + 1
});

};

render() {
return (

<div>
<PageHeader count={this.state.count} />
<Button handleCount={this.handleCount} />

</div>
);

}
}

function PageHeader(props) {
return(

<h1>{props.count}</h1>
);

}

function Button(props) {
return(

<button onClick={props.handleCount}>
Count Up!!

</button>
);

}

Here we can see a simple example of how React handles data
flow. There is a single point of truth for data. This exists in state that is
set and updated from a single component. Then data is passed in a one
way flow down through a nested component tree via props.

If state needs to be updated from a component other than where it
was originally set, then an event handler can be passed down to the
necessary child component as a prop. This keeps data immutable and
flowing one way because even if a child component triggers a change,
that change takes place higher up in the original component.

60 React Explained

When we assign the value of a prop to something from state, like
below, that prop value will automatically update whenever state
changes.

<PageHeader counter={this.state.count} />

Any other child component that references that prop value will also
receive the update automatically. This is the beauty of data flow in
React.

This can take a little while to get used to depending on how you
have approached problems like these with JavaScript in the
past. However, this should all serve as a good starting point for us to be
able to dig deeper into explaining React.

What’s Next?
From here we will begin looking at how to build Elements and
Components with React and add them to the pages. This will get us
hands on with building User Interfaces and practicing our React skills.

We then proceed into more depth on the concepts we outlined
above, learning how to put them into practice so we know how to use
them on our own. So, review any concepts above that feel worthy of
a second glance, then let’s jump in to writing some React of our own.

A High Level Overview of React 61

PART II

React Explained
This is the heart of this book. In the coming chapters we will explore
the foundations of React.

6

An Introduction to React Elements and
Components

In the previous chapter, we saw our first examples of React code.
In this chapter, we’re going to dig deeper as I introduce you to React

elements and components. As soon as this chapter is complete, you’ll
be ready to start writing your first React code.

React Elements Explained
A React element is a specific way of referring to a piece of the user
interface.

Technically, a React element is just a JavaScript object with specific
properties and methods that React assigns and uses internally.

Companion libraries can then take React elements and translate them
into elements native to whatever environment you’re running React.

For example, when we use ReactDOM, React elements are turned
into DOM elements. On the other hand, when we use React Native,
React elements are turned into native Android and iOS UI Elements.

However, React elements are not the same thing as DOM
elements. This is an important distinction. React elements are agnostic
to the environment in which they are ultimately rendered.

React elements are created using a function called
createElement().

React.createElement() Explained

The .createElement() method is part of the Top-Level React API
and used to generate React elements.

65

createElement('type', [properties], [children...]);

The method takes three parameters:

1. The type of element to create
2. The properties or attributes you want assigned to the
element
3. Element children (can be a strings of text or other
elements)

The example below gives a basic demonstration of .createElement in
action.

const hello = React.createElement(
"p",
{ className: "featured" },
"Hello"

);

Internally, this would create an object that looks something like this.

However, if we were to pass this object into the companion
ReactDOM library we would get something like this:

<p class="featured">Hello</p>

This demonstrates again how React elements are JavaScript objects
with properties and methods unique to React that can be passed to

66 React Explained

companion libraries and converted into elements native to those
environments. In this case, a React object is passed to ReactDOM and
converted to valid DOM elements.

Here is the full code for how we would make that work with
ReactDOM.

import React from "react";
import ReactDOM from "react-dom";

const hello = React.createElement(
"p",
{ className:"featured" },
"Hello"

);
ReactDOM.render(

hello,
document.getElementById("root")

);

The code above first imports both the React and ReactDOM libraries.
Then it calls ReactDOM.render(), which takes a React element

as the first parameter. The ReactDOM.render() will then convert this
React element into a valid DOM element.

The second parameter tells ReactDOM where on the page it should
add this newly created DOM element.

In this case, we are telling ReactDOM to render our paragraph
element inside of the HTML element with an ID of root.

Creating Components with .createElement() Explained

Most of the time we will not call .createElement() inline like we
did in the example above. Most of the time we will save the call inside
of functions (and later classes) so they can be reused or called in other
places in our code.

This might result in a pattern like the one below.

function Welcome() {
return React.createElement("h1", { className:"welcome"}, "Welcome!");

}

An Introduction to React Elements and Components 67

ReactDOM.render(
Welcome(),
document.getElementById("root")

);

Here we see the createElement() call assigned to a new function
called Welcome(). Welcome() would be considered a “component”
in React.

A React component is a function or class that returns a valid
React element.

Now, whenever we wanted to display a welcome message, we have a
reusable component (or function) that we can easily call.

Note that component names in React are capitalized. Welcome()
is used and not welcome(). This is done to to distinguish normal
functions from ones that return React elements.

In case it isn’t clear, the code above would result in the following
DOM element being added to the page.

<h1 class="welcome">Welcome!</h1>

After we introduce JSX in the next chapter, we will no longer call
createElement() manually, however, there are a few more aspects
of element and component creation we should explore before learning
the easy way to do things with JSX.

Nested Elements and Components Explained

In the previous examples we called createElement() and passed a
string of text as the child parameter. More commonly, elements will be
nested within each other.

Here is an example of a nested createElement() call in action.

function Welcome() {
return React.createElement(

"h1",
{ className: "welcome" },

68 React Explained

React.createElement(
"a",
{ href: "https://reactjs.org/" },
"Welcome!"

)
);

}

ReactDOM.render(
Welcome(),
document.getElementById('root')

);

Here we see a React component called Welcome() that returns an h1
React element. In turn, that h1 element has a React a element passed as
the child value.

Once passed through ReactDOM, this component would render as
follows.

<h1 class="welcome">
Welcome!

</h1>

This pattern of nesting elements is quite common and can go many
layers deep depending on the UI being built. We can also nest
components within one another and pass them as children parameters
to createElement().

Read through this example below that contains a number of
examples of elements and components being nested.

import React from "react";
import ReactDOM from "react-dom";

function Welcome() {
return React.createElement(

"h1",
{ className: "welcome" },
React.createElement(

"a",

An Introduction to React Elements and Components 69

{ href: "https://reactjs.org/" },
"Welcome!"

)
);

};

function Footer() {
return React.createElement(

"footer",
{ className: "entry-footer" },
Divider(),
React.createElement("p", {}, "Goodbye ?")

);
};

function Divider() {
return React.createElement("hr");

};

function App() {
return React.createElement(

"article",
{ className: "post" },
Welcome(),
Divider(),
React.createElement(

"div",
{ className: "entry-content" },
React.createElement("p", {}, "Main content")

),
Footer()

);
};

ReactDOM.render(
App(),
document.getElementById("root")

);

70 React Explained

Let’s work backwards through the code above, starting from the last
line where we pass the App() component into
ReactDOM.render() to be converted into valid DOM elements and
add to the page inside of whatever element has the id of “root.”

If we look at the App() function, or component, we can see it
is returning an “article” element, that ReactDOM.render() will
convert into a valid HTML <article> tag. The article tag has a class
of “post” and four children elements:

• A Welcome() component
• A Divider() componet
• A “div” element created inline

with createElement() that contains a “p” element as a
child, also created with createElement()

• A Footer() component

As we go further with React we will not usually call
React.createElement manually like this, however, the example above
shows how you can pass both components and createElement()
calls as children parameters to createElement().

To fully understand our app we would next have to explore the
Welcome(), Divider() and Footer() components. This process of
starting with a high level component and then moving down the
nested component tree to see what it contains is a very common
practice. If you learn to follow a component hierarchy you will be able
to find your way around most React applications.

So you can double check your interpretation of the code above, here
is what the code would ultimately produce in the browser once passed
through ReactDOM.render() and added to the page.

<article class="post">
<h1 class="welcome">

Welcome!
</h1>
<hr>
<div class="entry-content">

<p>Main content</p>
</div>

An Introduction to React Elements and Components 71

<footer class="entry-footer">
<hr>
<p>Goodbye ?</p>

</footer>
</article>

Reread through the code until this all makes sense. Please note that this
is not the cleanest way of nesting React elements and components, but
it does allows us to see the flexibility of what is possible.

Breaking Up Components Into Separate Files Explained
I don’t recommend storing all of our components in a single file. That
is generally a bad idea for any large JavaScript application. Instead, we
can break them into separate files using exports and imports.

Officially, React does not have a defined set of naming conventions
and file architecture to follow. However, many React apps follow
similar conventions. Throughout this book we will explore some
different conventions for this.

Refactoring our example from above we could create the following
files:

/src
|-- index.js
|-- App.js
|-- Welcome.js
|-- Divider.js
|-- Footer.js

A few common conventions are followed here:

• index.js – Imports App() and calls ReactDOM.render()
• App.js – Imports the other components and exports App()
• Welcome.js – Exports the Welcome() component
• Divider.js – Exports the Divider() component
• Footer.js – Exports the Footer() component
• We have an index.js file that would be the main entry point

for our app
• Component file names match the names of the components

they contain

72 React Explained

• Files exporting components are capitalized

For larger applications, we often also see certain components or aspects
of the app moved into their own directories.

For now, we simply need to know that we follow the same best
practices for writing React code that we do for writing JavaScript in
general: organize your code into logical, modular, parts.

A Note on Fragments
As we have seen, components must return a single element. This
element can have other elements or components nested within it, but a
component cannot return two sibling elements.

This is not a problem most of the time, but there are instances where
you don’t want to add additional parent elements just to get around the
sibling elements issue.

Let’s take an example where an App component returns a Header,
Content and Footer component. In order to do this we would have
to wrap all the components in a div or something like that.

function App() {
return (

React.createElement("div", {},
Header(),
Content(),
Footer()

)
)

}

However, let’s imagine we did not want to have another div or parent
element at all there. To solve this problem, React has the
React.Fragment.

A Fragment is a DOM node that exists in memory as a wrapper
node, but disappears and leaves no markup once it is added to the page.
It is not unique to React as Fragments are a valid part of the DOM
API. However, React has it’s own version that looks like this.

An Introduction to React Elements and Components 73

function App() {
return (

React.createElement(React.Fragment, {},
Header(),
Content(),
Footer()

)
)

}

The code above solves the problem of returning a single element.
However, that element does not return any markup. If we were to
render this to a page with ReactDOM.render() we would just see
Header, Content and Footer rendered with no parent element.

Using React.Fragment is not required but it is good to remember it
exists incase you ever have a situation where you do not want an actual
element displayed to the page.

Writing Functional Components with Arrow Functions
When we create components using functions in React, it is possible to
use arrow functions for a shorter syntax. This is not required, but it is
a pattern you will see done.

Arrow functions in JavaScript do not keep track of the this
keyword. However, we do not need the this keyword when building
simple components. For this reason, arrow functions are an acceptable
syntax for creating components, as long as we don’t need to scope or
bind this.

Here is what the arrow function looks like when used for creating
components.

const App = () => {
return (

<div className="App">
<Header />
<Content />
<Footer />

</div>
);

74 React Explained

};
ReactDOM.render(

<App />,
document.getElementById("root")

);

Notice that we are using fat arrow functions here without any
parameters so we have an empty () parenthesis. Then our normal
return() inside of the function with the components or other JSX we
want to have our component return.

We will use arrow functions to create components until we learn
about State and components that will need binding of this later on in
this book.

A Brief Review of Elements and Components
When working with React, some common terms will get used in
different ways to mean different things. Elements and components can
often be used this way.

Remember, a React element is simply a JavaScript object with
certain properties and methods unique to React that is created using
React.createElement(). When writing React for the web,
React elements usually map to HTML elements.

A component in React is a function or class that returns a valid React
element.

React elements and components can both be nested to allow for
building complex user interfaces. Although we can store multiple
components in a single file, it is generally a good idea to break up our
apps into modular files. Often time in React a file will contain a single
element and that is all.

What’s Next?
In this chapter, you learned about React elements and components.
You’re ready to start writing React code. Turn the page, and we have
5 practice exercises to get you started with React.

An Introduction to React Elements and Components 75

7

5 Exercises in Writing React With
Elements and Components

Let’s start writing React!
We have 5 exercises for you that will help you starting writing

React.
You can download the practice exercises for this book

at https://github.com/zgordon/react-book. The exercises for this
chapter are under “chpt-4-elements-and-components.” You will find
“practice-starter” with comments outlining the exercises. Then the
“practice-completed” has all the completed examples for you to check
your answers against.

Here is a brief overview of the practice exercises with some insight
into each one.

Practice Exercise #1
The first exercise involves create a simple paragraph element using
React.createElement(). The paragraph element should not
have any special classes or attributes and some simple text like “Hello
React.”

You should save this element as a variable using const. Then at the
bottom of the exercises where ReactDOM.render() is called, add your
element variable name there to test that you created it properly.

You can open the index.html file in the browser to test that
everything works properly. If you get stuck, check the completed code
for a little help.

You final markup should look like this:

<p>Hello React.</p>

77

https://github.com/zgordon/react-book

Practice Exercise #2
The second exercise is similar to the first in the you will start off
creating an element and saving it as a variable. The element we’re
creating as an h1 element with a class of “entry-header.” However, this
element has a link element inside of it that links to the React website
and includes the text of “React.”

Like the example above you will have to add your element variable
to the ReactDOM.render() call in order to test it.

Your final markup should look like this:
<h1>React</h1>

Practice Exercise #3
In the next exercise we will create a component rather than a single
element. The component is called Header and it should return a
header element with an ID of “main.” Inside of the header element
you should pass in the p element and the h1 element you created from
Exercises #1 and #2.

To test you will add Header() to ReactDOM.render(). Your final
markup should look like this:

<header id="main">
<h1>React</h1>
<p>Hello React.</p>

</header>

Practice Exercise #4
From here we continue with another component example. This
exercise has you creating a component called List that returns an
unordered list with three list items within it. Each list item should be
a link to a React resource. The ul element should also include both a
custom class and ID attribute.

When you call List() in ReactDOM.render() it should return
markup like this:

<ul class="react-links" id="top">

78 React Explained

React Docs

ReactDOM Docs

React Explained Book

Practice Exercise #5

In our final exercise we create a component called App that returns a
React.Fragment with our Header and List components within
it. This will give us practice using React.Fragment as well as
creating components that return other components that in turn return
individual elements. This is a fairly common practice in React.

The final markup for this will look something like this:

<header id="main">
<h1>React</h1>
<p>Hello React.</p>

</header>
<ul class="react-links" id="top">

React Docs

ReactDOM Docs

5 Exercises in Writing React With Elements and
Components 79

React Explained Book

What’s Next?
After you have successfully completed the practice exercises, you
should feel comfortable creating basic elements and components using
React. I would encourage you to try creating some of your own
elements and components.

As you may have noticed, using React.createElement can become
quite cumbersome, especially when creating nested components and
elements.

Luckily we have a library called JSX that gives us an easy to use
shorthand for React.createElement.

Rather than do something like this with vanilla React:

const boldLinkPEl = React.createElement(
"p",
{ className: "featured" },
React.createElement(

"a",
{ href:"https://reactexplained.com/" },
React.createElement(

"strong",
{},
"Important Link"

)
)

)

We can write this with JSX:

<p className="featured">

80 React Explained

Important Link

</p>

You’ll see that this looks an awful lot like HTML right inside
our JavaScript. This is exactly what JSX is. JSX gives us the ability to
write what looks like HTML, but is actually just a shortcut for writing
React.createElement.

In the next chapter we will go over the rules of JSX. Going forward
we will hardly ever (possibly never) need to write
React.createElement() in it’s long form again.

5 Exercises in Writing React With Elements and
Components 81

8

An Introduction to JSX

In the previous chapter, we created React elements and components
using React.createElement().

As we saw, creating components can involve a lot of nested
functions calls and object definitions. These do not make for code that
is easy to read and write.

JSX is a separate JavaScript library from React that serves as a
shorthand for calling React.createElement() to create elements
and components. JSX looks like HTML. But, thanks to Babel, it
processes as valid JavaScript.

Most React apps use JSX. It is possible to use JSX without React, but
it is most commonly used alongside React.

In this chapter, we’ll look at the rules and syntax for JSX.

What is JSX?
Hopefully you have seen the markup language, HTML. XML is an
extended version of HTML where you can create your own elements
with names of your like <item>, <query>, or pretty much anything
else you want.

JSX stands for JavaScript XML. It is an extension for JavaScript that
allows for writing what looks like HTML and XML in your JavaScript.

So you may have some code that looks like this:

const Heading = () => (
<h1>

React!

83

</h1>
)

Within the React ecosystem we could take this Heading() function
and use it as a component that display an h1 with a link inside when
passed through ReactDOM.render().

There are important rules to JSX we need to know, but first let’s look
at what is going on under the hood when we write JSX.

JSX is Just React.createElement() Under the Hood
Behind the scenes, when JSX gets transpiled (by Babel in our case),
it uses React.createElement() to create the same elements it
represented in its XML style. Since React.createElement() is a
basic JavaScript function we can call it in the browser without needing
it to be transpiled further.

So taking the following example again with JSX:

const Heading = () => (
<h1>

React!

</h1>

)

When we transpile this using a tool like Babel React JSX Transform,
we get the following code:

const Heading = () => (
React.createElement(

"h1",
null,
React.createElement(

"a",
{ href: "https://reactjs.org/" },
"React!"

)

84 React Explained

);
)

You can see here that in the place of the XML style markup in the JSX
example, we have the React.createElement() function being
called.

You will soon get very comfortable writing JSX and forget all
about React.createElement(). Let’s look now at where we tend
to see JSX written, since we can’t throw it just anywhere without
knowing what we’re doing.

Where Can We Write JSX?
You will likely see JSX written in two places:

1. It can be saved as a variable anywhere in your JavaScript
code.
2. It is usually included in the return statement of
Component functions and classes.

Let’s take a look at each of these:

const heading = <h1>Heading</h1>;

Now anytime we wanted to reference that heading element we
could using the heading constant. While this is not the most common
way of writing JSX, it is done often, so it’s helpful to know you might
see it used this way.

More likely, though you will see JSX written in the return statement
of a component like so:

const Heading = () => (
<h1>Heading</h1>

)

What is nice about this approach is that if a function or class returns
valid JSX, we can then call it as a JSX element like so:

const Heading = () => (

An Introduction to JSX 85

<h1>Heading</h1>
)

const Post = () => (
<div className="post">

<Heading />
<p>Post content here.</p>

</div>
)

Notice that we can use the heading function as it’s own element in JSX.
We are going to learn a lot more about the syntax and rules of

JSX, but for now we want to remember that we will most commonly
use it in the return statement of components and sometimes saved as
variables.

Opening/Closing Tags and Self-Closing Tags
Just like with HTML and XML, we have two types of JSX tags. The
first type of tag includes an opening and closing tag like this:

<tag>Some text</tag>

The other type of tag is self closing, like the following:

<tag property="value" />

Since JSX includes the basic HTML tags by default, you would likely
understand the following JSX:

<div>
<p>This is a paragraph<p>

</div>

The above example shows both opening/closing paired tags in action
as well as a self closing tag for the img.

86 React Explained

HTML Tags Are Lower Case
As we have seen, when we pass an HTML tag to JSX it will create the
corresponding HTML tag using React.createElement(). When
we write HTML in JSX we want to use lowercase letting like so:

<div>
<h1>Heading Element</h1>
<p>This is a paragraph<p>

</div>

This may seem intuitive, but it is important to point out this
convention. This also distinguishes basic JSX tags from custom ones
we setup on our own.

For example, we can see here the difference at a glance between
default HTML JSX tags and custom component tags we have made.

<div>
<Heading />
<p>This is a paragraph<p>

</div>

These rules for capitalization are not necessarily required, but they
are best practices and should basically be considered required syntax.

JSX Capitalization Rules Explained
When working with JSX we want to follow the following
conventions:

1. Variable assignment should be lower case
2. Function returning valid JSX should be uppercase
3. Class returning valid JSX should be uppercase

In the example below we create our own capitalized JSX element by
assigning it to a constant.

const welcome = <p>Welcome!</p>;

Then later in our code we could call our welcome message just like

An Introduction to JSX 87

a normal variable. The important thing to point out is that these are
written lower case.

When we’re working with components though we want to
capitalize the name.

Here is something similar using a function:

const Welcome = () => {
return <p>Welcome!</p>;

}

We could also write this using a class, which we will discuss later in the
book

class Welcome extends React.Component {
render() {

return <p>Welcome!</p>;
}

}

Whether we use a function or class to create our components we will
always name them uppercase and call them using the JSX syntax like
below:

<Welcome />

Otherwise, if you are using any of the default HTML tags, remember
leave them lowercase.

Writing JavaScript Between Curly Braces {}
Since JSX processes most of what it receives through
React.createElement() it is important to be able to interrupt
that process if we want to run JavaScript (and not just write JSX tags).

As we will see, this happens quite a lot. A few examples include
passing a variable into JSX, writing a short event handler, or even
writing conditional logic. In each of these cases, we use curly braces {}
to escape from the JSX and write plain old JavaScript or React code.

const Welcome = () => {

88 React Explained

const name = "Zac Gordon";
return <p>Welcome {name}!</p>;

}

In the example above we are adding a variable named name into our
JSX.

It is important to note in this example where the JSX begins and
where it ends. The JSX does not actually start until we see the <p> in
the return statement. Then it ends with the closing </p> tag. Before
and after that we can write normal JavaScript. However, within those
<p> tags we can only write more JSX tags, not normal JavaScript.

The curly braces tell our transpiler to process what is between the
curly braces as normal JavaScript.

So in the example above we wrap our name variable within curly
braces since we want that variable (normal JavaScript) to not be
processed as JSX, but as JavaScript.

Here is another example of how we could combine
Vanilla JavaScript within JSX.

const name = "Zac Gordon";
const heading = <h1>Welcome {name}!</h1>
const Welcome = () => {

return (
<div>

{heading}
<p>An additional welcome message</p>

</div>
);

}

The example above shows two instances of using curly braces to
interrupt the processing of JSX in order to process vanilla JavaScript.

In the first instance we are using the name variable inside of the
heading JSX. The JSX for the heading starts with the <h1> and ends
with the </h1>. So if we want to reference normal JavaScript within
that we need to use the curly braces.

The second instance is referencing our heading variable. Now
you might think that the heading variable is JSX. That is not really

An Introduction to JSX 89

true. Technically it is a JavaScript variable that contains JSX. However,
in order to reference heading we are calling normal JavaScript.

So within the Welcome component, when we want to call
our heading we have to place it between curly braces since we are
once again writing JavaScript within JSX tags (starting and ending
with <div></div>).

Remember, whenever you have JSX tags and want to call
a JavaScript variable or write some vanilla JavaScript, you have to
escape it with curly braces.

However, we cannot really write any JavaScript. We can only
write JavaScript expressions within curly braces.

Only JavaScript Expressions Can Go Between Curly Braces {}
As mentioned in the chapter on Important JavaScript to Know for
React, an expression in JavaScript is something that returns a value or
is a value.

JSX will only accept expressions between curly braces. That means
we cannot write full statements as we might expect, only bits of
JavaScript that return a value.

Here are a few common types of expressions you may use:

• Variable and object values
• Function calls and references
• Conditional expressions*

Here is an example with the first two types of expressions in action:

const site = "React Explained";
const user = {

first: "Zac",
last: "Gordon"

};

const getFullName = user => {
return `${user.first} ${user.last}`;

}

const Welcome = () = {

90 React Explained

return (
<h1>

Hi {getFullName(user)}! Welcome to {site}
</h1>

);
}

While we would not likely see an example exactly like this in
production, it does demonstrate how you can use function calls, objects
and strings within curly braces inside JSX.

Conditional Expressions in JSX Explained
Because we can only pass JavaScript expressions into curly braces, it is
important to point out the only type of conditional statements we can
write inside of JSX are conditional expressions.

Traditionally when we write a conditional statement we might do
something like this:

const Welcome = props => {
const isLoggedIn = true;
if (isLoggedIn) {

return <p>Welcome!</p>;
}
return <p>Please login!</p>;

}

This is not using conditional expressions, but it works because it does
not appear within our JSX. Rather, our JSX appears as an expression
within our normal JavaScript.
However, if we tried to do the following, where we place our normal
conditional statement within our JSX it will not work.

const Welcome = () => {
const isLoggedIn = true;
return (

<div>
{if (isLoggedIn) {

<p>Welcome!</p>

An Introduction to JSX 91

} else {
<p>Please login!</p>

}}
</div>

);
}

This will not work for a few reasons. First, the JavaScript inside of
the curly braces is not an expression, but a statement. Once we start
writing our JSX (with the first opening <div> tag) we can only include
expressions within the curly braces. Second, we are trying to include
JSX inside of our curly braces, which won’t work either.

This is actually a common stumbling block when starting to work
with conditionals and JSX. The most common work around involves
using a conditional ternary operator, like so:

const welcomeMessage = isLoggedIn ? (
<p>Welcome!</p>

) : (
<p>Please login!</p>

);

Note this is usually written in one line, but broken up here into
multiple lines to fit on the page.

This checks if isLoggedIn is true or false and assigns the value of
the code in the parenthesis after the question mark if it is true. If the
check returns false, the code in the parenthesis after the colon will be
returned. Hopefully you notice, this conditional test returns a value and
is therefor an expression, which can be used within curly braces in JSX.

This allows us to rewrite our conditional statement in the following
way:

const Welcome = () => {
const isLoggedIn = true;
return (

<div>
{ isLoggedIn ? (

<p>Welcome!</p>

92 React Explained

) : (
<p>Please login!</p>

)}
</div>

);
}

We see that isLogged in is checked and the proper JSX is
returned. However, rather than be assigned to a variable, the value is
rendered along with anything else in the return statement.

It is also common to see the same conditional pattern used, but
abstract the conditional expression out of the return statement and
assign it to a variable like so:

const Welcome = () => {
const isLoggedIn = true;
const welcomeMessage = isLoggedIn ? (

<p>Welcome!</p>
) : (

<p>Please login!</p>
);
return (

<div>
{welcomeMessage}

</div>
);

}

Some developers find this pattern cleaner and preferred. Whatever
approach you decide to take, remember that anything that appears
within JSX must evaluate to an expression, and this includes our
conditional checks.

Conditional Checks with && (AND) Explained
While the above mentioned approached to conditional statements
where an if and else condition applies, sometimes we do not have an
else statement. In these cases we can rely on an interesting pattern

An Introduction to JSX 93

in JavaScript where any expression always returns to true (unless it
explicitly returns a falsy value).

This allows us to do something like this:

const Welcome = () => {
const isLoggedIn = true;
return (

<div>
{ isLoggedIn && (<p>Welcome!</p>)}

</div>
);

}

In the example above, isLoggedIn returns as true. The double
ampersands checks to make sure that both the first and second
conditional check are both true. Any JSX we place inside of parenthesis
should return true as well. Therefore, since both tests pass, the value of
the expression in curly braces is returned and displays. If isLoggedIn
returns false, the expression with JSX will still return true, but the
overall conditional check fails due to the double ampersand requiring
both checks to be true.

Again, this is a nice solution when you have a conditional check to
do that only requires an if and no else. Place the value you want to
check first, use double ampersands then after that, place the expression
you want to execute inside parenthesis.

Mapping Over Arrays with JSX Explained
Standard for loops are not expressions and therefore cannot be used
within our JSX. Most JavaScript developers also prefer to map over
arrays rather than run for loops as discussed in the earlier chapter on
JavaScript.

The nice thing about maps in JavaScript is that they are expressions,
so we can use them within our JSX.

Let’s imagine that we want to map over an array of posts and display
the title for each one. We will assume for sake of simplicity that all
of the posts we need are being passed as part of the props parameter,
which we will get into more later.

94 React Explained

const ListPosts = props => {
const posts = props.posts;
return (

{posts.map(post => {post.title})}

);

}

While the above code will work as expected, best practices suggest
that when you need to map over content is should be pulled out of
the return statement and into a variable or it’s function or class. In the
example below we clean up our code a little bit by pulling out the map
into it’s own value.

cont ListPosts = props => {
const posts = props.posts.map((post) =>

{post.title});
return (

{posts}

);

}

In the future chapters we will look more at component architecture
and best practices on breaking out code that does multiple things into
smaller modules. We will also discuss props in depth in their own
chapter.

JSX Keys and Lists Explained
Due to how React intelligently renders and re-renders nodes in the
DOM, we need to place “keys” in all list items that we create with JSX.

const ListPosts = props => {
const posts = props.posts.map(post => {

return (
<li key={post.id.toString()}>

An Introduction to JSX 95

{post.title}

)
});
return (

{posts}

);

}

You can see here that for each list item we have assigned it an attribute
of “key” with a value of the post ID.

This allows React to keep track of items within a list and only update
certain items when needed, rather than the entire list of items each
time. The ability to do this is one of the primary benefits of a library
like React. However, in order for this to work, we need to add keys to
list items.

It is possible to use an index if no unique ID is available, however,
this has serious performance drawbacks so the following approach
should not be taken:

const ListPosts = props => {
const posts = props.posts.map((post, index) => {

return (
<li key={index}>

{post.title}

)
});
return (

{posts}

);

}

Rather than taking this approach with index, I would suggest you

96 React Explained

add unique identifiers to your data, possibly using symbols or another
approach that makes sense based on your data.

Fragments with JSX Explained
We learned in the previous chapter the React gives us a special
React.Fragment() element we can use when we want a
component to return multiple elements.

With JSX we get a few shorter ways of using Fragments.

const App = () => {
return (

<React.Fragment>
<Header />
<Content />
<Footer />

</React.Fragment>
);

}

In the example above we are using the longest method of writing
fragments. This could be shortened a bit like this:

const App = () => (
<>

<Header />
<Content />
<Footer />

</>
);

However, it is important to note that some tools do not yet support this
syntax so you may want to use the <React.Fragment> instead if the <>
shorthand format is not supported.

One final note should be mentioned that it is possible to add keys
to React Fragments if necessary. The React docs give the following
example:

const Glossary = props => (

An Introduction to JSX 97

<dl>
{props.items.map(item => (

// Without the `key`
// React will fire a key warning
<React.Fragment key={item.id}>

<dt>{item.term}</dt>
<dd>{item.description}</dd>

</React.Fragment>
))}

</dl>
)

The example above can be helpful because it allows React to update
just a single instance of the definition list without updating the entire
thing. We will see over time how this offers great performance
benefits.

Let’s Practice!
Now that we have covered a number of the important rules for
working with JSX, let’s practice writing some. This will get you
comfortable with writing JSX and help you walk through some of the
most important concepts and rules for how it work.

98 React Explained

9

5 Exercises in Writing React With JSX

As we will see there are more rules to JSX, but the above gives us a
solid introduction. Now let’s do a little practice to solidify what we
have learned.

You should already have the practice exercises, but you can
download them here if you do not already have them:
https://github.com/zgordon/react-book.

The exercises for this chapter are under “chpt-5-jsx.” Just like with
the last chapter you will find blank starter files with comments of what
to do as well as completed files with working code. All you have to do
to test is open the index.html file in your browser.

If you completed the practice exercises from the last chapter you
will find these very familiar. In fact, they are the exact same exercises
as before, but this time we will complete them using JSX rather
than React.createElement() directly.

Practice Exercise #1
The first exercise involves create a simple paragraph element using
JSX. The paragraph element should not have any special classes or
attributes and some simple text like “Hello React.”

You should save this element as a variable name pEL using const.
To test, call pEL the bottom of the exercises where
ReactDOM.render() is called.

You final markup should look like this:

<p>Hello React.</p>

99

Practice Exercise #2
For the second exercise we will practice nesting elements. Create a
const named h1LinkEl. Give it the value of an h1 element with a
class of “entry-header.” Inside of the h1, create an anchor element with
a link to the React website and the text “React.”

Like Example #1 above you will have to add your element variable
to the ReactDOM.render() call in order to test it.

Your final markup should look like this:
<h1>React</h1>

Practice Exercise #3
In this exercise we will create a component rather than a single
element. The component is called Header and it should return
a header element with an ID of “main.” Inside of the header element
you should pass in the paragraph element and the h1 element you
created from Exercises #1 and #2.

To test you will add <Header /> to ReactDOM.render(). Your
final markup should look like this:

<header id="main">
<h1>React</h1>
<p>Hello React.</p>

</header>

Practice Exercise #4
From here we continue with another component example. This
exercise has you creating a component called List that returns an
unordered list with three list items within it. Each list item should be
a link to a React resource. The ul element should also include both a
custom class and ID attribute.

When you call <List /> in ReactDOM.render() it should
return markup like this:

<ul class="react-links" id="top">

React Docs

100 React Explained

ReactDOM Docs

React Explained Book

For bonus points, make up a unique key for each list item.

Practice Exercise #5

In our final exercise we create a component called App that returns
a Fragment with our Header and List components within it. This
will give us practice using React.Fragment as well as creating
components that return other components that in turn return
individual elements. This is a fairly common practice in React.

The final markup for this will look something like this:

<header id="main">
<h1>React</h1>
<p>Hello React.</p>

</header>
<ul class="react-links" id="top">

React Docs

ReactDOM Docs

5 Exercises in Writing React With JSX 101

React Explained Book

What’s Next?
After you complete the exercises above you should feel comfortable
creating basic elements and components with JSX. You should also
understand that behind the scenes, our JSX “markup” is being passed to
React.createElement().

I would encourage you to try creating some of your own elements
and components as well as additional practice.

There are more rules to writing JSX, but we need to learn about
some more important React features before they will make much sense.
However, before we start digging deeper into React we have to get a
better development setup.

Up to this point we have been linking to React, ReactDOM and
Babel from script tags in our index.html file. This is fine for practice,
but it is not ideal for development.

Our next step from here is to learn how to use the Create React App
tool. This will give us a better integrated development environment
for working with React.

102 React Explained

10

An Introduction to Creating React Apps

Up until this point we have been loading the React and ReactDOM (as
well as Babel) libraries via a script tag in our HTML file. While this
works fairly well for learning and playing around when we’re getting
started, it has several limitations. The most important is that we cannot
use imports to reference other libraries or easily break up our code into
small modules and have them easily tracked. There are more as well
but these alone are worth moving from the approach we have to using
more powerful tools.

The typical React work flow involves using scripts for bundling,
transpiling, linting, testing, running a development server and often
more. This can be a lot to setup, keep updated, and modify manually
to suite your exact needs.

Create React App gives us all of these scripts together in one tool.
By default it will also hide away the configuration files and settings for
these various scripts, giving us a simpler file hierarchy and cleaner work
environment.

It also provides the ability to transition away from the simple, default
interface and expose all of the underlying scripts and their
configurations if developers need to work with setting different from
what Create React App offers.

However, in many cases, especially for us working through this
book, Create React App will meet our needs for developing React
apps. So, let’s take a look at what it specifically does and how we can
use it.

What Create React App Includes
Bundled with Create React App, we get the following:

103

• webpack – A bundler
• webpack Dev Server – The webpack Node development

server
• Babel – A transpiler
• Several polyfills
• ESLint – A linter
• Jest – The React testing library

If you’d like some more information on any of these, please refer back
to the chapter on Important Tools for React.

There are also some alternative Create React App version that
include other tools. Create React App Typescript includes Typescript
and Create React App Parcel uses Parcel instead of webpack, for
example. In this book we will use the original Create React App and
the tools it offers.

As mentioned, all of these tools and their configurations are hidden
out of the way, so when we first setup and use Create React App we
will not see the configuration files for these tools.

Setting Up Create React App
In order to use Create React App, we first need to install it. To do that
we want to have the latest versions of Node and NPM. It is a little
outside the scope of this book to walk through the installation of Node
and NPM, so please make sure that you have the latest version of these
tools installed and running on your computer before proceeding.

To create a React app (or site) with Create React App we would run
the following command in the command line:

npx create-react-app my-project

This will run the Create React App code and create a new directory
called project-name in the directory where we originally ran the
command.

So we may be in a folder called projects, run the command above
and then end up with the following basic hierarchy.

|-- projects/
| |-- my-project/

104 React Explained

| | |-- node_modules/
| | |-- public/
| | |-- src/
| | |-- .gitignore
| | |-- package.json
| | |-- README.md
| | |-- yarn.lock

Let’s break down the purpose of each of these folders and files that
Create React App gives us out of the box.

Create React App Files and Directories Out of the Box
In the previous section we listed out the various directories and root
level files that Create React App generates. Now we are going to go
into more depth with each of them.

node_modules

The node_modules folder is where NPM will save all dependent
files and libraries for our project. If you look inside the folder it will

contain a lot of other directories that contain different that Create
React App depends on to work.

The reason we see so many packages or directories is that often time
a single library will require several other libraries as dependencies so we
are seeing a flat listing of all of the large and smaller libraries here not
just for React itself but also for the different tools that Create React App
includes.

Later we will install our own packages and both those packages
and any packages they depend on will be stored in the node_modules
folder.

When Create React App (using webpack behind the scenes) bundles
our code together it will bundle together all of the necessary packages
from the node_modules folder as well. For this reason, we only need
the node_modules folder in our local development environment.
When we deploy to our production environment, we do not want to
include the node_modules folder.

An Introduction to Creating React Apps 105

public
The public directory is where all of our public facing, non JavaScript
code will go, particularly the main index.html file.

If we look in public to start we will see the following:

|-- public/
| |-- favicon.ico
| |-- index.html
| |-- manifest.json

The favicon.ico and index.html should make sense.
The favicon.ico is the React logo, which you can swap out with
your own favicon.ico file.

The index.html is not something you will generally need to edit
because most of your UI will be generated from React, not from hard
coded HTML.

The manifest.json file, called a Web App Manifest, and it
provides meta information about our site our app. It is most commonly
used for devices to offer an “Add to Home Screen” option that will
load an icon for our site to our device home screen and allow it to
know information about our site, like what URL to open, what icon
and name to use and other information.

It is a good idea to modify the short_name, name, theme_color
and background_color to suite your project needs.

As mentioned, as we build our project and add more React code,
we will see additional files added here automatically during the build
process.

src

The src directory will contain all of our pre-bundled React code.
This is our working development directory. Unlike our public
directory, the src directory will not be shipped to production.

In order for another developer to make changes to your React code
they will need access to this src directory. For this reason, you will
often see this src folder included in version control.

|-- src/

106 React Explained

| |-- App.css
| |-- App.js
| |-- App.test.js
| |-- index.css
| |-- index.js
| |-- logo.svg
| |-- registerServiceWorker.js

If we look at the file architecture we will see that we have a few files
designated to an App component. This includes a CSS file, a JavaScript
file and another JS file holding the tests for our component.

The code within the App.js file should look something like this:

import React, { Component } from 'react';
import logo from './logo.svg';
import './App.css';

class App extends Component {
render() {

return (
<div className="App">

<header className="App-header">
<img

src={logo}
className="App-logo"
alt="logo" />

<h1 className="App-title">
Welcome to React

</h1>
</header>
<p className="App-intro">

To get started, edit
<code>src/App.js</code> and save to
reload.

</p>
</div>

);
}

}

An Introduction to Creating React Apps 107

export default App;

We haven’t looked at working with using classes for creating
components yet, but everything else should look pretty straight
forward. We import React, an image and some CSS. Then we make
a component with a header and welcome text.

Finally the component is exported.
We will look at this code more later as we start building with Create

React App, so let’s turn our attention next to the index.js file. This
is our entry point for our app and where Create React App will start
looking to for import statements to pull together all of our code and
bundle into compiled code it sends to the public directory.

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import registerServiceWorker from './registerServiceWorker';

ReactDOM.render(
<App />,
document.getElementById('root')

);
registerServiceWorker();

If we look at the code in our index.js file we will see it imports
React and ReactDOM, which makes sense. Then it imports some
CSS and our App component.

Then we see something new, we import
registerServiceWorker. We have not discussed service workers
yet in this book. They are a Web API that leverages caches to allow for
sites to work offline or faster on slow connections. With Create React
App we get service workers out of the box without any configuration.

You can see that at the bottom of this file
the registerServiceWorker() function is called to kick things
off. While we’re starting off we don’t need to worry about this and
will just let it run in the background.

108 React Explained

The other thing we see in this file is ReactDOM.render() loading
our <App /> component to the div with an ID of “root” in our /src/
index.html file.

This index.js file represents a common pattern for React apps.
It pulls in a single component that will in turn call and handle all
other components. It also loads any high level functionality like service
workers. Later we will see things like routing handled at this high
level index.js file too.

.gitignore

The .gitignore file is important for React apps since a number of
the files and directories should not be version controlled, particularly
the node_modules folder. Any directories or files listed in this file will
be excluded from being pushed to Git or any other version control that
recognizes .gitignore file.

package.json
This is one of the most important files for a React app that involves
multiple developers or is shared. It contains a number of important
things, but two are most important.

The first is a list of all packages needed for development. Since
the node_modules directory is not included in version control, the
package.json will contain a list of all of these packages. One of the first
steps when working with someone else’s (or a shared) React app is to
run npm install. This will look through the package.json file
and download all the necessary packages to a node_modules folder.

To start, Create React App only has three dependencies listed here:
React, ReactDOM, and React Scripts. As we build our apps we will
install more dependencies and they will be automatically added to this
list.

The other thing this file contains are NPM scripts you can run
with your app. Commonly we have npm run dev and npm run build
or similar commands that will handle different ways of bundling or
watching your code for changes and managing servers. Create React
App has it’s own set of commands it gets from React Scripts:

An Introduction to Creating React Apps 109

• npm start – Starts our development server
• npm build – Builds a production build of our app to

public
• npm test – Runs any tests we have setup
• npm eject – Will extract out all the hidden configurations

and stop using Create React App (not reversible)

You might want to change the name or version of your app here,
but otherwise you should not need to modify this file.

README.md
Another standard file here. To start, Create React App gives you a
generic read me file with a list of the file hierarchy and available scripts.

It is likely you will want to rewrite this for your own needs. I would
not suggest shipping your app without updating this file.

yarn.lock
Yarn is a tool similar to NPM from the folks at Facebook who built
React. In this book we will primarily use NPM, but many developers
prefer yarn. The yarn files are very similar to the package.json files that
NPM uses.

Using Create React App for Development and Production
Now that we have Create React App setup and understand it’s various
parts, let’s look a bit more at the common commands we will use with
it.

From within the project directory run the following:

npm start

This will spin up a webpack development server and watch your files
for any changes. It will also open http://localhost:3000/ in
your browser since that is the default URL and port that Create React
App uses.

Now, if you make any changes to your src code, for example in
the App.js or App.css file, those changes will be detected and your

110 React Explained

app will be re-bundled. The webpage showing your app will also be
automatically reloaded.

Before you start working on a React App with Create React App
you always want to run npm start so your changes are detected.
However, this command is meant for development, not for production.

When you are ready to bundle your app for production you will
want to run the following:

npm run build

This will create a new build directory that includes everything from
the public directory as well as an assets folder containing the CSS and
JS bundled from your src folder.

This build folder is the folder you would ship to production.
So, when you need to work on developing and building your React

app or site, make sure that you run npm start first. Then when you
are complete with a sprint or the entire project, run npm run build
to get a final bundled version of your app.

Using Create React App on an Existing Project
So far we have been approaching Create React App as if you were
starting a React project yourself from scratch. However, there are
instances where you want to fork or work on someone else’s project
who started it with Create React App.

If this is the case you should know they are using Create React
App in one of two ways. First, they will hopefully tell you in the
README.md file of the project. Second, you can open the
package.json file and see if they have a setup like the following:

"scripts": {
"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test --env=jsdom",
"eject": "react-scripts eject"

}

If the following commands exist in the package.json it is more than

An Introduction to Creating React Apps 111

likely they are using Create React App. So, everything we have said
so far applies and everything we will continue to cover in this chapter
applies.
However, before getting rolling you have to run npm install.
This will pull down all the dependencies you need to your
node_modules folder. Since Create React App does this for you when
you first create a project with it, you will have to do this step manually
when working with a project that has already been created.

Running Tests with Create React App
Testing with JavaScript and React is a little outside the scope of this
book. However, Create React App does ship with the Jest testing
library, the preferred testing library for React apps.

If you ever need to run any of your tests, npm run test will kick
off that process for you. We are not going to explore those options in
this book, but once you are comfortable with testing, it should all make
sense and be a helpful integration.

Ejecting from Create React App
Create React App offers a number of built in tools behind the scenes
as we have seen. With some projects you may want to customize the
configuration files for the built in tools.

When this happens for a project, you will need to run a one time
npm run eject command that migrates all of the configuration files
from being hidden and makes them all available for you to edit.

You cannot undo the npm run eject process.
The only reason to run eject is if you know the tool want to

customize and feel comfortable making and maintaining changes to it
along with the other tools. We are not going to look into running
eject in this book as it will not be necessary for our needs and for likely
most of your React projects.

Remember, you do not have to eject from Create React App to build
or launch your app, just if you want to customize the underlying tools
settings in a way that is not possible.

112 React Explained

How You Will Likely Use Create React App
In most cases when you start building a new React project you will run
npx create-react-app project-name to kick off the project.

After that first time though, npm start will be the command you
run from the project directory to start watching your files for changes
and starting up the development server.

When your project reaches points where you are ready to ship to
staging or production, you will run npm run build and send the
build directory where it needs to go.

If testing is part of your workflow you will likely run npm run
test regularly. Calling npm run eject, however, should rarely be
necessary and a command that means the end to working with Create
React App on that project.

On the chance that you start working on a project someone else has
started with Create React App, you will need to run npm install
the first time before calling npm start.

An Introduction to Creating React Apps 113

11

5 Exercises in Creating a React App

Now that we have a basic understanding of what Create React Does
and how to use it, let’s do some practice.

For these practice exercises you will need a generic practice
folder. Then for each exercise you will spin up a new Create React
App instance from that practice folder.

Practice Exercise #1

Inside of a practice folder call npx create-react-app
exercise-1 from the command line.

Then navigate into the new folder using cd exercise-1 and
run ls.

You should see the list of default React files outlined in section,
“Setting Up Create React App,” above.

This exercise will help you establish comfort setting up a new project
with Create React App and moving into it with the command line.

Practice Exercise #2

Inside of a practice folder call npx create-react-app
exercise-2 from the command line.

Open up the exercise-2 directory in your code editor.
Run the command npm start from inside

the exercise-2 directory. Open the URL it gives you for the
development server in your browser. To stop the development server,
type Ctrl + C in the command line.

Then in your code editor, change the text of the p tag in the /src/
App.js file from “Edit <code>src/App.js</code> and save to reload” to

115

something else. On save you should see the browser refresh with your
new value.

This exercise will help you gain confidence starting the Create React
App development server and seeing the changes to your code reflected
in the browser.

Practice Exercise #3

Inside of a practice folder call npx create-react-app
exercise-3 from the command line.

Open up the exercise-3 directory in your code editor.
Run the command npm start from inside

the exercise-3 directory. Open the URL it gives you for the
development server in your browser. To stop the development server,
type Ctrl + C in the command line.

Then in your src directory, add a new file named Hello.js with
the following code:

import React, { Component } from "react";

class Hello extends Component {
render() {

return <p className="Hello">Hello!</p>;
}

}
export default Hello;

Then open your src/index.js file and change the references to
App on line 4 and <App /> in line 7 to the following:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import Hello from './Hello';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(
<Hello />,

116 React Explained

document.getElementById('root')
);

When you save the changes to the src/index.js file you should see
the changes reflected in the browser.

This exercise will help reinforce the skill of setting up React apps,
while also getting you comfortable adding new component files to an
app and having them show up working in the browser.

Practice Exercise #4

Inside of a practice folder call npx create-react-app
exercise-4 from the command line.

Open up the exercise-4 directory in your code editor. Then
change the text in the p tag in the /src/App.js file from “Edit
<code>src/App.js</code> and save to reload” to something else.

Then run npm run build in your project directory. It should create
a build folder.

As suggested, then run the following two commands:

yarn global add serve
server -s build

This should in turn give you a link to open up the built version of the
site on a server of it’s own, different from the development server.

If you are able to complete this exercise you should feel more
comfortable running the build process for getting your app ready for
production.

You can now also preview this built version using it’s own little
server, although doing that is completely optional.

Practice Exercise #5

Inside of a practice folder call npx create-react-app
exercise-5 from the command line.

Then cd into the exercise-5 directory from the command line.
Run the following command to eject your configuration file settings

and leave Create React App:

5 Exercises in Creating a React App 117

npm run eject

You will have to confirm “y” that you want to eject from Create React

App. If you are using git, you will have to make sure you have no untracked
changes before doing this.

Once the eject command has run you should see a config and
scripts directory in your exercise-5 folder.

Now run npm run start just to make sure everything is still
working. You should see the development server start as done in
Practice #2. To stop the server, type Ctrl + C in the command line.

There is no undoing the eject command so only do it when you
know what you are doing or have support from someone who does.
However, practicing this exercise on a practice project is a good idea
to see how it works without breaking an existing project.

Next Steps
For the rest of the book we will be using Create React App to spin
up new little React projects. If you would like to run through the
exercises above a few additional times it can be good practice.

Create React App is a great call for starting React projects. It should
work as a solution for most of your projects.

On the chance that you are working with a team or project that
requires a different setup than what Create React App provides, you
can still expect to have basic commands like npm start or npm run
build or some equivalent available to call.

118 React Explained

12

Props in React Explained

As we have learned, React is a user interface library.
We have React.createElement at the heart of creating HTML

interfaces on the fly with JavaScript. Then JSX serves as a syntactical
extension to make calling createElement look more like writing
HTML.

Up to this point we have created and nested components, but we
have not looked at how data is passed between and shared between
components. Without understanding this important aspect of React we
would not be able to build very interesting or dynamic interfaces.

Props are the most basic (and common) way to pass data between
components.

Props is short for properties. React elements are technically objects
and can therefor have properties attached to them. These properties
contain data that is made available to use in that given component.

Basic Props Syntax
Let’s take a look at a basic example of props in action and then break
down some important aspects.

// Display a user profile
function Profile(){

function getCurrentUser() {
// Do things to get the user;
return user;

}
return (

<div className="profile">
<Avatar user={getCurrentUser()} />

119

<UserName user={getCurrentUser()} />
</div>

);
}

// Display a user Avatar img
function Avatar(props) {

return (

<img
className="avatar"
src={props.user.avatarURL}
alt="Avatar for {props.user.fullName}"

/>

);
}

// Display the user name in a link
function UserName(props) {

return(

{props.user.fullName}

</div>
);

}

Let’s start in the <Profile /> component. We have a function
here that we are pretending get’s the current logged in user for an app
(although we haven’t actually written the function). This is a fairly
common example of a function that would exist in an app.

However, the problem we have is that we need that user information
available to both the <Avatar /> and <UserName /> components.
To pass this data using JSX we will add what look like HTML
attributes to our components. In this example we are adding a user
prop or property to our <Avatar /> and <UserName
/> components.

Then when we look at our Avatar() and UserName() functions

120 React Explained

we will see that we are adding a parameter called props. The
props parameter is actually available to all custom components we
create. We do not see it with our Profile() component because we
are not leveraging it, but you will often seen it included by default in
all components created with functions just in case.

Inside of our Avatar() and UserName() components we that
props.user is now something we have access to. We now have a
working example of taking data from one component and passing it
into child component.

There is more we have to learn about using components, but this
example serves to show us the very basics. What we have to emphasize
before proceeding to learn more about props is that data only moves
in a one way direction in data props, and that is from parent children
down to children.

One Way Data Flow Through Components
Historically, JavaScript applications have had a two way flow of data.
This makes more sense with an MVC or MV* architecture where
different views or controllers had to have a live record of data in other
views or controllers.

React has a different model. React does not have two way data
binding. It has a one way flow of data.

Data in React apps only flow down through an app, from parent
components to children components. If you have worked with two
way data binding or MC* architecture in the past this can take a while
to get used to. However, the React one way data flow model is actually
beautifully elegant and removes much of the complexity and places
where something can go wrong with two way data binding.

What this means at a practical level is that once data is passed down
from a parent to a child, that prop value should not be changed. If
prop values need to be changed, there is a model for doing that we will
explore in the next chapter using state. This reinforces the practice of
immutability for all data passed through our app as props.

Setting Props at the Highest Component Level Necessary
Since we cannot pass data up the component hierarchy, from children

Props in React Explained 121

to parent components, we want to start passing props at a level in the
component hierarchy where that data will reach all necessary children
components that need the data.

Let’s take a look at a simple site built using React as an example

<Site />
|

| | |

<Header /> <Content /> <Footer />
| |

---------------- --------------
| | | |

<SiteInfo /> <MainNav /> <Copyright /> <FooterNav />

Let’s imagine now that the <SiteInfo /> component and the
<Copyright /> component both need to have access to the site
name.

To get the site name we might write a function called
getSiteName() that would pull the site name from wherever it is
stored. However, the question arises of where should we write that
function?

We could write the function twice, once in the <SiteInfo />
component and again in the <Copyright /> component, but
obviously duplicating our code is a bad idea. We could also write a
helper library and import that into our React code and call the function
in each of the <SiteInfo /> and <Copyright /> components.
While possible, this is not the normal practice in React as we are still
duplicating that function call. Plus, in most cases, we want to keep
all our necessary functions within actual components, not in separate
libraries for easier tracking and troubleshooting.

So, the most common practice would be to write
the getSiteName() function inside of the <Site /> component
and then pass the data from that component down through the
<Header /> and <Footer /> components as props and then finally
into the <SiteInfo /> and <Copyright /> components. As we

122 React Explained

can see, the <Site /> component is the first parent component that
shares both <SiteInfo /> and <Copyright /> as children.

// Setup the main site component
function Site() {

function getSiteName() {
// Do something to get siteName
return siteName;

}
return (

<Fragment>
<Header siteName={getSiteName()} />
<Content />
<Footer siteName={getSiteName()} />

</Fragment>
);

}

// Display the Header component
function Header(props) {

return(
<header>

<SiteInfo siteName={props.siteName} />
<MainNav />

</header>
);

}

// Display the SiteInfo component
function SiteInfo(props){

return (
<div className="site-info">

{props.siteInfo}
</div>

);
}

In the example above you can see how props would be passed from the
<Site /> component down through <Header /> and finally used

Props in React Explained 123

for <SiteInfo />. The same would also be done for <Footer />
and <Copyright />.

We also see here “Setting Props at the Highest Component
Necessary.” We have placed the function call for the User object
high enough in our component hierarchy that all necessary child
components have access to the data via props.

However, this does not mean that we should “Set Props at the Highest
Component Possible.”

Let’s take a look at another example to reinforce the difference
between the “highest component necessary” and “highest component
possible.”

<Site />
|

| | |

<Header /> <Content /> <Footer />
|

| | |

<SiteInfo /> <Profile /> <MainNav />
|

| | |

<Avatar /> <UserName /> <Points />

In the example above, we’re just looking at a part of the component
hierarchy as <Content />, <Footer />, <SiteInfo
/> and <MainNav /> would all likely have children components
as well. We are focused for this example on the <Profile
/> component and it’s children.

Let’s imagine now that <Avatar /> and <Username /> both
needed access to a User object, but that User object was not needed
anywhere else on the site.

What we would do in this case is write a function like
getCurrentUser() inside of our <Profile /> component.

124 React Explained

Then we would pass the value returned from that down into
our <Avatar /> and <Username /> components. This is exactly
what we did in our example at the start of this chapter.

What is important to point out here though is that we would not
add the getCurrentUser() function to the <Site /> component
just because it is the highest component possible where we could
place it. We only need the User object available in <Avatar
/> and <Username /> and we only have to go up to their common
parent in order to achieve this. This leads to self contained components
that contain all data that children components may need to share.

If down the road, however, the User object was also needed in
the <Footer /> components or one of it’s children then we would
need to move the getCurrentUser() function up into the <Site
/> component. It is important to know that while developing and
extending a React app you may need to move around certain functions
or original setting of props to higher components if where you need
that information changes.

This process of setting props at the first shared parent component,
or the highest component necessary, is a practice that will take a little
while to figure out at first but eventually become second nature when
building React apps. We will also do some practice with this at the end
of the chapter.

Passing Props Down Through Multiple Components
In large applications it is not uncommon to pass props down through
multiple layers of components. Sometimes components may not
directly use the props they are passed, they just pass them on to children
components.

For performance reasons we want to avoid passing props down
through too many layers of components if it is not necessary. The
specific reasons for this are a bit beyond our scope at this time, but it
has to do with components being unnecessarily re-rendered or updated
on the page if there are ever changes to the props that it passes.

We will look at some design patterns with React later on that help
with this, but for now, we start off practicing how to pass props down
at least one or two levels of children components.

Props in React Explained 125

Boolean Props Default to True
One important rule about props with boolean values that will allow
you to write less code involves boolean props being set to true by
default.

Imagine for example if we wanted to pass a prop of loggedIn into
a component. Then we could conditionally load one of two different
component based on whether or not a user was logged in or not.

function App() {
return (

<div className="App">
<Header loggedIn={true} />
<Content />

</div>
);

}
const Header = ({ loggedIn }) => (

<div>{loggedIn ? <Profile /> : <LoginForm />}</div>;
);

This is pretty basic React. We can shorten it in one way if the props
value for loggedIn is true. If any boolean prop has a default value of
true we can simply leave off the prop value and React will set it to true
for us.

function App() {
return (

<div className="App">
<Header loggedIn />
<Content />

</div>
);

}
const Header = ({ loggedIn }) => (

<div>
{loggedIn ? <Profile /> : <LoginForm />}

</div>
);

126 React Explained

Notice the only difference in the two versions of this code is that
<Header loggedIn={true} /> has been shortened to just
<Header loggedIn />.

From now on, if you have a prop without a value know it will get
set to true.

Passing Props with Spread
Since we have pointed out it is not always a performant option to pass
props down multiple levels, there are some instances when you might
want to pass all or most of the props from one component into a child.
Using the JavaScript Spread operator can be helpful with this.

Let’s imagine for demonstration purposes that we had a <Profile
/> component that recevied a bunch of props and had to pass them
down into a generic child component called <Card />.

Normally we would start with this.

function App() {
return(

<div className="App">
<Profile

name="Zac Gordon"
url="https://zacgordon.com"
bio="Educator, Yogi, ...more"

/>
</div>

);
}

const Profile = props => {
return(

<div className="profile">
<Card

name={props.name}
url={props.url}
bio={props.bio}

/>
</div>

);

Props in React Explained 127

};

const Card = ({ name, url, bio }) => {
return(

<div className="card">
{name} - {bio}

</div>
);

};

Notice the repetition of having to manually pass props into <Profile />
and then again pass them all into <Card /> as well. With the Spread
operator we can shorten the <Profile /> component to just this.

const App = () {
return(

<div className="App">
<Profile

name="Zac Gordon"
url="https://zacgordon.com"
bio="Educator, Yogi, ...more"

/>
</div>

);
}

const Profile = props => {
return(

<div className="profile">
<Card {...props} />

</div>
);

};

const Card = ({ name, url, bio }) => {
return(

<div className="card">
{name} - {bio}

</div>

128 React Explained

);
};

Notice that instead of listing each prop manually, we can write
{…props} which will spread each prop into it’s own prop to be passed
into the component.

It is important to point out, passing all props is generally
considered a bad practice, however, there are some times when it
may be necessary and the spread operator can help us in those cases.

Destructuring Props
In addition to Spreading props, Desctructuring props can be helpful as
well.

One technique involves destructuring props as they are passed into a
component function. This involves identifying specific props that you
will need, not just the generic props object that contains all properties.

So where we may have written this previously:

const User = props => {
return (

<p>

@{props.username}
 - {props.name}

</p>
);

}

With destructuring we can write this:

const User = ({username, name, userURL}) => {
return (

<p>

@{username}
 - {name}

</p>

Props in React Explained 129

);
}

We could also do the destructuring inside of the function if we want
to keep access to props.

const User = props => {
const {username, name, userURL} = props;
return (

<p>

@{username}
 - {name}

</p>
);

}

This may seem simple, but it has a few advantages. First, it clearly
identifies exactly what props you need. Second, it makes props easier
to write (ie props.username vs username).

You do have to remember with this style to add any new props you
will use to the destructuring in the parameters section.

If we only want to destructure some of the props we can do a
combination of destructuring along with spreading the rest of the
properties into a new property like this.

function User({name, ...rest}) {
return (

<p>

{name}

</p>
);

}

The benefit of this approach may not be apparent in this specific
example, but if we needed to pass on some props and not others to
children it can be helpful in that instance.

130 React Explained

function User({name, ...rest}) {
return (

<p>
{name}
<Card {...rest} />

</p>
);

}

In the example above we need to use name in the User component, so
we destructure that one prop. However, we need to pass the rest of the
props down into a child component so we spread the rest of the props
into a variable named rest.

While you might not resort to using these conventions on your own
when just starting with React, they are patterns you will see, so it can
be helpful to know about them in advanced.

Component Props vs. Element Attributes
One last important topic to mention about props is how they work
with React Elements. Props with components, behave as props.
However, with React Elements, “props” behave as HTML attributes.

In these instances, props that match HTML attributes will be
automatically assigned as those attributes.

const Header = () => {
return (

<h1
id="primary"
className="primary"
title="A title to apply"
random="BLAH"

>
The Header

</h1>
);

};

In the example above we are adding what looks like Props to a React

Props in React Explained 131

Element. In this case, all of the “props” added are actually just
converted into HTML attributes.

For example, the component above will produce the following in
the DOM:

<h1 id="primary" class="primary"
title="A title to apply" random="BLAH">
The Header

</h1>

We can see that most of these are valid HTML attributes, so it works as
we might expect. However, notice that “random” has also been added
as an attribute even though it is not a valid HTML attribute.

React does not assess whether something added in this way is valid
HTML, so it’s important for us to remember when working with React
Elements, that what looks like props are actually treated as attributes.

Updating The Value of Props
Hopefully in learning about props in React you have asked yourself the
question, “What happens when I need to update the value of a prop?”
Or the more complex, but also important question, “How can I update
props set in a parent component from within a child component.”

These are really important questions and part of the React
workflow. However, in order to understand how this works, we have
to introduce the topic of State in React. We will do this in the next
chapter.

So for now, let’s do some practice with setting a prop value that does
not change and passing it down through components.

What’s Next
Now that we have learned about how to set hardcoded values for props
and pass them between components we have to look at how to update
the value of props and pass dynamic data through components. This
involves an introduction into State.

In the next chapter we will explore State in React, how it works,
and how it can make our apps way more powerful than just using

132 React Explained

Props alone. We will also look at how to write class based components
(rather than functional components) to support the new features state
brings.

First, let’s do some practice with what we have learned about props.

Props in React Explained 133

13

5 Exercises in Working with Props

Now that we have learned a bit about Props in React, let’s do some
practice creating and passing props.

Practice #1
In this first practice we will practice adding props to a component. To
get setup, open the 07-props/practicestarter project and run
npm install then npm start.

Then find the <User /> component on line 11 in the src/
Practice1.js file.

Pass in id and username as props to the component. You should
see in on line 16 that the <User /> component is already setup to use
these props, they just need to be passed.

Once this is complete, you can open the src/index.js file and
uncomment line 4:

import Practice1 from "./Practice1";

Finally, make sure that you call <Practice1 /> on line 13 in
place of “Call Practice Component Here.”

You should see the user ID and username render in the browser.
This practice exercise will help you get you comfortable with the

first step of working with Props, passing them into a component.

Practice #2
In our second practice we will take a step further with our practice
of adding props to a component. To get setup, open the 07-props/

135

practice-starter project and run npm start if the server is not
already running.

Open up src/Practice2.js in your code editor. Add two
properties to the post object on line 7. One for id and one for
title.

Then come down inside the Practice2() return and call the
<Post /> component inside of the div being returned.

Pass in the post object we created as a prop into the <Post />
component.

Finally come down to where the <Post /> component is setup and
modify it to receive props and return both the id and title props
within the paragraph tag it returns.

Once you have all this working, open the src/index.js file and
uncomment line 5.

import Practice2 from "./Practice2";

Finally, make sure that you call <Practice2 /> on line 14 in
place of the <Placeholder /> or<Practice1 />component.

You should see the Post title and id you setup being rendered on the
page. You can try modifying the original post object you setup to test
that it all works properly.

This practice exercise is great to help you setup more of the parts
of props on your own. We define the variables used as props, set the
props on a component and then modify a component to work with
props. This may we worth practicing a few times on your own.

Practice #3
Now that we have practiced a little with adding and using props, we
will have you write a bit more of the code on your own as well as pass
props down two levels of components rather than just one.

To get setup, open the 07-props/practice-starter project
and run npm start if the server is not already running. Open up
src/Practice3.js in your code editor.

Find the <Post /> component on line 11 and pass in the title
and author as props.

136 React Explained

Then setup Post on line 21 to receive props and pass title to
<Heading /> and author to <Byline />.

Finally, make a component Heading that accepts props and displays
the title with <h1> tags. Also make a Byline component that returns
a paragraph with the author displayed from props.

Once you have all this done, open the src/index.js file and
uncomment the line

import Practice3 from "./Practice3";

Finally, make sure that you call <Practice3 />
in ReactDOM.render().

In the browser this should display the title and author on the
page and give you experience passing props down through multiple
levels of components.

Practice #4
In this practice we will work with spreading and destructuring props.
This will expose you to some common patterns of working with React
that you will no doubt see in other projects and likely use in your apps
as well.

To get setup, open the 07-props/practice-starter project
and run npm start if the server is not already running. Open up
src/Practice4.js in your code editor.

First, look for the <User /> component called within Practice4 on
line 18. Spread the user object into the <User /> component so each
user property becomes it’s own prop.

Then, inside of the User on line 26, destructure firstName and
username from the props and use them in the component where you
see FIRSTNAME_HERE and USERNAME_HERE.

Of course you still have to wire up the src/index.js file and
make sure you have <Practice4 /> imported and <Practice4
/> called in ReactDOM.render().

If everything is setup correctly, you should see firstName and
username work as variables inside of the User component.

5 Exercises in Working with Props 137

Again, this practice is meant to help you get comfortable with
spreading and destructuring with props.

Practice #5
In our final exercise we pull together what we have done in the
examples above into one larger example.

Setup by opening the 07-props/practice-starter project
and make sure npm start is running. Then open src/
Practice5.js in your code editor and make sure <Practice5 />
is wired up in src/index.js.

Within src/Practice5.js, you first want to spread the user
object into the <User /> component like we have done in the previous
exercise.

Then follow the instructions for destructuring the user props in
User and passing the proper props into <FullName />, <Username
/>, <Social /> inside User on line 29.

To get <FullName />, <Username />, <Social /> working,
you will need to follow the instructions for each component to set it
up, destructure the necessary props, and call the props as outlined in the
comments for each component.

Once everything has been setup correctly, you will see the Full
Name of the user displayed in an <h1>, the username in a <p> tag and
finally a list of social links.

What’s Next
Hopefully you had fun practicing with props. They can be a little
tricky when starting, but will become second nature after too long.
However, props are only part of the data flow architecture in React.
Another essential part is state.

In the next chapter we will introduce state in React and learn how it
can help us update our props and components with dynamic data.

138 React Explained

14

State in React Explained

State is a generic term in JavaScript development that refers to keeping
dynamic data that might change in an object named state. Then,
whenever your JavaScript needs to get data, it does so via the state
object.

Along with a state object there is usually a function (or set of
functions) that let’s you set or update values stored in the state object.
Setting or updating a value in state then triggers a reaction where the
new value of state gets immediately updated through your entire app.

Many JavaScript frameworks will have a global state object for the
entire app. The popular library, Redux, handles offering a global state
object along with ways to update state throughout your app and keep
a record of changes.

By default in React, we do not have a global state object, but
every component can have it’s own state object. This means that each
component has the option to set and manage it’s own state.

If needed, a component can pass the value of it’s state down to child
components via props. If the value of state changes in that component
the new value will automatically update any child component
receiving the value as a prop.

The discussion of state can get a little complex, but the main
takeaway is if a React Component has data that it needs to change, we
will store that data in a state object and use a helper function to update
the data.

State and Class Based Components

139

Up to this point we have used functions to create components in
React.

An example of a functional component:

const MyApp = () => (
<h1>Welcome</h1>

);

However, in order for state to work we will need to use classes for our

components. There is a new hooks feature coming to React that will allow
functional components to receive and update state.

Here is an example of a component created via a class setup to use
state:

class MyAppClass extends React.Component {
constructor(props) {

super(props);
this.state = {

name: "React"
}

}

render() {
return (

<h1>`Welcome ${this.state.name}</h1>
)

}
}

Luckily we can use the simplified Class Fields syntax supported in
Create React App to get rid of the constructor method:

class MyAppClass extends React.Component {
state = {

name: "React"
}

render() {
return (

140 React Explained

<h1>`Welcome ${this.state.name}</h1>
)

}
}

Now, let’s break down a bit what is happening here.
First, we are naming our component MyAppClass, which makes it

available to be imported and called elsewhere as <MyAppClass />. This
is the same as components built with functions.

We are also extending another class called React.Component. This
is a class in React core that offers base functionality for building
components with classes. All components you build with classes
should extend React.Component.

Next we are setting up our state object using the fields syntax. State
is an object. In this case state has one property, name.

Below that we have a render() method. All class based
components must have a render() method in React that returns a React
element.

This is similar to how all function based components have to return
a React Element. However, with classes, it is a method named render()
that always returns the React Element.

Of course, this element can be nested, like with functional
components.

We also find within render() a call to this.state.name. This is the
format for calling state in a class method.

Again, state is a container for any data that a component may need
to change. So an example of a component with more state properties
would look like this:

class Profile extends React.Component {
state = {

name: "React Explained",
url: "http://reactexplained.com"

}

render() {
return (

<h1>

State in React Explained 141

{this.state.name}

</h1>

);
}

}

Updating State with setState in a Class Based Component

In the example above we saw state in use in a static example where
we were not changing state.

When we change state in React, we use a function called setState,
which takes as a parameter an object with any properties in state that
we want to change.

We can call setState via this.setState since it is inherited from
React.Component.

class Name extends React.Component {
state = {

name: "React Explained",
}

render() {
this.setState({name: "New Name"});
return (

<h1>{this.state.name}</h1>
);

}
}

In this example above we are calling this.setState() inside of render,
right before returning the React Element. The object we pass
identifies the property we want to update, name, and the new value,
“New Name.”

142 React Explained

We can also change multiple values of state at once if needed with
one setState call.

class Name extends React.Component {
state = {

name: "React Explained",
url: "https://reactexplained",

}

render() {
this.setState({

name: "New Name",
url: "https://newurl.com",

});
return (

<h1>

{this.state.name}

</h1>
);

}
}

As we can see, setState will take an object with any properties from
state along with their new values.

Make sure that before you call setState on a property, that it has
already been setup in the initial state object.

Updating State with Event Handlers

Most of the time we do not hard code setState() calls into our
render() functions but rather handle them with event handlers.

Here is a simple example showing how we could attach an event
handler to a button to update a value in state.

class Counter extends React.Component {

State in React Explained 143

state= {
count: 0

};

handleClick = e => {
e.preventDefault();
this.setState({

count: this.state.count + 1
});

};

render() {
return(

<>
<h1>{this.state.count}</h1>
<button onClick={this.handleClick}>

+
</button>

</>
);

}

}

In the example above we have a initial value for our count state of
0. Then we see an handleClick function that will serve as our event
handler for increasing the value of count and calling setState.

We can see here we are calling setState and update the value of count
to be the current state of count plus one.

We wire this function into our UI in render(). Look for the button
element with a property of onClick set to this.handleClick.

React event handlers are usually attached by setting a property for
an element such as onClick, onSubmit, onChange, etc, equal to a
function.

It is also possible to write the event handler function inline when you
set the onClick value.

class Counter extends React.Component {
state= { count: 0 };

144 React Explained

render() {
return(

<>
<h1>{this.state.count}</h1>
<button

onClick={e => {
e.preventDefault();
this.setState({ count: this.state.count + 1 });

}}
>
+

</button>
</>

);
}

}

In the example above we use an anonymous arrow function to call
setState inline. It can actually be condensed into just one line of code,
but for readability in the book it has been broken down onto multiple
lines.

When we want to update state via event handlers we will generally
follow an approach like the simple example above.

We will see plenty of examples of event handlers updating state
throughout this book. Let’s take a look next at how we can pass the
value of state down into child components using props.

State and Props

There are many instances when a component with state needs to pass
the value of it’s state down to a child component.

To do this we use the same props method we looked at in the
previous chapter. The nice benefit is that whenever we call setState on
a property in state it will cause the new value to automatically update
in any child component referencing the value as a prop.

State in React Explained 145

Here is our example from above broken into two components to
demonstrate how this works.

const Name = props => <h1>{props.count}</h1>;

class Counter extends React.Component {
state= { count: 0 };

render() {
return(

<>
<Name count={this.state.count} />
<button

onClick={e => {
e.preventDefault();
this.setState({ count: this.state.count + 1 });

}}
>

+
</button>

</>
);

}
}

In this example above we have a new functional component named
Name that just displays a prop called count. Note that if a component
does not need state, we will continue to use functions to create them,
not classes.

When we call <Name /> in render() we set the props of count
equal to the current value of count in state. Then whenever the event
listener is called and state gets updated, an update value also gets passed
into <Name /> and immediately updated on the page.

The same would be true if we were to pass the value of count
down into further child components. Whenever the original state gets
updated, that change will be reflected anywhere down the line it is
referenced as a prop.

146 React Explained

Updating Parent State from Child Components

One of the problems that comes up is how to have a child
component update the state value of a parent component. Since
individual components all manage their own state it is not really
possible for one state to call setState on another component.

The way around this involves taking the function that updates state
and passing it down as a prop as well into child components.

This allows child components to update the state in parent
components by calling a function from that parent component that was
made available via state.

Here is an example of how that could look.

const Name = props => <h1>{props.count}</h1>;

const Button = props => (
<button onClick={props.handleClick}>+</button>;

);

class Counter extends React.Component {
state = { count: 0 };

handleClick = e => {
e.preventDefault();
this.setState({

count: this.state.count + 1
});

};

render() {
return (

<>
<Name count={this.state.count} />
<Button handleClick={this.handleClick} />

</>
);

}
}

State in React Explained 147

In this example we have made our button into it’s own component.
However, the event handle it will call when clicked is passed down to
it via props. So the button component has no idea what it is actually
updated.

In the Counter class we have broken the event handler out into it’s
own function again.

Then when we call our Button component, we pass in our
handleClick function. Interestingly, when that function gets called
inside a child component, it will still execute in the context of the
Counter class and update the counter state in the correct component.

Making State Persistent

State is a wonderful tool for managing data that changes. However,
when we refresh the page our state get’s reset to the default values.

So, there are times when we might want to make state persistent, or
last between page refreshes or tabs closing.

A few options exist for doing this. Some of the most common are
using local storage, session storage or a database. It is possible to write
your own code to do this, but several packages and libraries exist that
can help you easily do this.

In the case of local storage, the values of your state will be saved in
local storage so if someone refreshes the page or even closes the tab and
comes back, it will remember the last value of state your app had used.

With session storage the value of state is made persistent until the
user closes the browser tab. At this point the current value of state is
wiped and the default state values from your app are shown. Session
storage can be helpful if you know you want to wipe state as soon as a
user is done using your site.

Using a database, like the popular Firebase, allows you to store your
state values outside of the user’s browser for more reliability. It should
be noted here the distinction between having a database store content
for your site that you load via HTTP requests and keeping just the
latest state of an application stored in state.

It is outside of the scope of this chapter to get into how to integrate

148 React Explained

each of these approaches, but many tutorials and npm packages exist to
help you easily implement these different solutions.

To briefly show an example of a simple implementation of making
state persistent using local storage, we can install the following
package:

npm install react-simple-storage
This will install a package that syncs our state into local storage and

checks the local storage for our state on initial page load if it is available.
We can see this in action with our counter example before. All we

need to do is add <SimpleStorage parent={this} /> to the top of our
main app component and everything will work.

import React from "react";
import ReactDOM from "react-dom";
import SimpleStorage from "react-simple-storage";

const Name = props => <h1>{props.count}</h1>;
const Button = props => <button onClick={props.handleClick}>+</button>;
class Counter extends React.Component {

state = { count: 0 };

handleClick = e => {
e.preventDefault();
this.setState({

count: this.state.count + 1
});

};

render() {
return (

<>
<SimpleStorage parent={this} />
<Name count={this.state.count} />
<Button handleClick={this.handleClick} />

</>
);

}
}

State in React Explained 149

const rootElement = document.getElementById("root");
ReactDOM.render(<Counter />, rootElement);

Here we can see at the top of our example we import SimpleStorage
from “react-simple-storage.” Then in our main Counter component
we call <SimpleStorage parent={this} />. This single component will
kick everything off for us and make state map to local storage.

When we run this code above and refresh our browser we will see
the value of count stays up to date.

If we had a main index.js file for our app or a main App.js
component, we would likely put the <SimpleStorage parent={this} />
call within there.

As mentioned, there are several different approaches to making state
persistent. It may be that your app doesn’t need any of them, or you
may decide to explore some of the packages and tutorials available to
help you make state persistent.

Let’s Practice
We have explored some of the main fundamentals of state so far, but
let’s start practicing with them a bit to really solidify how to work with
state in a practical application.

150 React Explained

15

5 Exercises in Working with State

Practice #1
In this exercise we will practice creating a property in state and
rendering it on the page. To get setup, open the completed-starter
project and run npm install then npm start.

Then open the src/Practice1.js file.
Before the render function create a state object with a property of

username set to a common username you use.
Then in the render() function, replace USERNAME_HERE with

value of username from state.
This practice exercise will help you create values in state and render

them to the page.

Practice #2
In this practice exercise we will work with updating the state using
setState and an event handler. To get setup, open the starter files and
run npm start if the server is not already running.

Open index.js and make sure Practice2 is imported and called in
ReactDOM.render(). Make sure npm start is running.

Next open Practice2.js.
After the state is setup and before the render function, create an

arrow function called handleUsername that takes the event object as a
parameter. It would look something like this to start:

handleUsername = e => {}

Have the function handleUsername set the new value of username

151

equal to the event target value (e.target.value). We will get this value
from an input form field when we attach it as an event handler.

Then come down inside the render() function and set the onChange
prop for the <input /> element equal to the handleUsername function
we just created. Remember to call it using the this keyword.

Set the placeholder value of the <input /> equal to the username in
state.

Once you have all this working, open the src/index.js file and
uncomment line 5.

import Practice2 from “./Practice2”;
Finally, make sure that you call <Practice2 /> on line 14 in place of

the <Placeholder /> or<Practice1 />component.
This exercise gives you practice updating state using setState and

event handlers. This is an essential part of working with state. This
exercise also introduced how to use the onChange event with an input
field.

Practice #3
Now that we have practiced creating and setting state we will practice
how to update the value of state from a child component.

Open index.js and make sure Practice3 is imported and called in
ReactDOM.render(). Make sure npm start is running.

Next open Practice3.js.
Update the UserForm component to accept props. Then update

PROPS_ID, PROPS_LABEL and PROPS_ONCHANGE to get their
values from props.

Next come down underneath the handleFirst function and create
another one called handleLast that will control changing the value of
last name in state.

Finally, come down into the render() method and call <UserForm />.
Set the following props:

• id = “firstName”
• label = “First Name”
• onChange = handleFirst

152 React Explained

Then call <UserForm /> again with the correct props for a Last Name
form.

This exercise shows how to pass event handlers to update state down
into children components. It also shows how to use a single component
that can accept different event handlers for different functionality.

Practice #4
In this exercise we practice passing both the value of state and the
handlers to update state down into children components. We also look
again at how to create a simple component that can accept different
event handlers to cause different interactions.

Open index.js and make sure Practice4 is imported and called in
ReactDOM.render(). Make sure npm start is running.

Next open Practice4.js.
First, create a functional component called Header that accepts

props. Have it display an <h2> with text from props.
Second, create a function component called Button that also accepts

props. Have it return a <button>. Set the onClick value equal to
onClick from props. Set the text for the button equal to text from
props.

Next, inside Practice4(), create a state object with a count property
set to 0.

Still inside Practice4(), create an increment function that sets the
value of count in state to count plus one. Create a decrement function
that decreases the value of count in state by one. Then create a reset
function that updates the count state to 0.

Then in the render() return, call <Header /> and set the prop of text
equal to the value of count from state.

Then call <Button /> three times. The first time set the onClick
prop to decrement and the text prop equal to “-“. On the next one,
have onClick set to increment and “+” for the text. Finally, set the last
<Button /> onClick set to reset and the button text say “Reset.”

Once done, this should display a counter on the page with +, – and
Reset buttons that will increase and decrease the value of the counter.
All of this runs from states and involves reusable children components.

5 Exercises in Working with State 153

Practice #5
In our final exercise we take our last practice exercise and add local
storage support for state so that it remains on page refresh or when
leaving and coming back to the page.

Open index.js and make sure Practice5 is imported and called in
ReactDOM.render().

Make sure that Create React App is not currently running.
Install the Simple Storage package using the following:

npm install react-simple-storage

Once the package is installed, run `npm start` and open
Then make sure that SimpleStorage is imported from “react-simple-

storage” so we can use it in our component.
Come down into the Practice5() render() method. Call

<SimpleStorage /> and set a parent prop equal to “this”.
This should automatically make sure that count from state is saved in

local storage. Try increasing the count and then refreshing the page. It
should keep the original value.

154 React Explained

16

The Component Lifecycle Explained

A lifecycle, in broad programming terms, refers the entire time an
application or piece of code is running, from when it is called and
initializes to when it completes and stops.

Components in React all have their own lifecycles. This starts with
when they are called to be rendered, lasts while they are displayed and
completes when they are no longer being called.

React provides functions we can hook into and use to call our own
code during each stage of the component lifecycle. Some of these
lifecycle hooks we use quite often for certain use cases and others are
for more fringe cases.

In this chapter we will explore the component lifecycle hooks and
when we might use them.

It is important to note that access to the component lifecycle
is only available by default when we create our components
with classes instead of functions.

The Component Lifecycle
To start off, let’s look at the entire component lifecycle. This starts
when a component is first called to be rendered to the page and ends
when it is no longer being rendered.

Here is an illustration of the component lifecycle.

155

We can see from the illustration that the component lifecycle breaks
down into four stages:

1. Initializing – When the component is being setup and
props and state are being passed and setup

156 React Explained

2. Mounting – The period of time when the component is
actually rendered to the page and immediately after it has
been rendered
3. Updating – This stage optionally kicks in any time there
is an update to a prop passed into the component or state
within the component
4. Unmounting – The final stage where the component is
removed from the page

Each stage of the component lifecycle includes access to different
lifecycle hook functions. Over the next few sections we will look
at each of in more depth, paying particular attention to the most
commonly use lifecycle hooks.

Initializing Lifecycle Hooks
In this first lifecycle phase, the component itself is not yet available, but
rather, is being prepared to be ready. There is just one lifecycle hook
available at this time.

getDerivedStateFromProps()
This lifecycle hook is executed while your component is being
initialized, before it is rendered to the page. It takes two parameters,
which React automatically populates for you:

getDerivedStateFromProps(props, state)

At this time in the component lifecycle, the only thing that is available
are the props being passed into the component as well as the default
value of any items in state. The component itself is not even yet
available.

It is rare that you will need to do something using this hook.
In fact, the React documentation encourages you to use other hooks
besides getDerivedStateFromProps() whenever possible.

However, if you ever need to get access to the props and state of a
component before it is rendered here is what that will look like.

const App = () => <App loggedIn="false" />

The Component Lifecycle Explained 157

class Demo extends React.Component {
state = {

count: 0
};
static getDerivedStateFromProps(props, state) {

console.log(props); // { loggedIn: false }
console.log(state); // { count: 0 }

}
render() {

return <p>getDerivedStateFromProps() Example</p>
}

}

We can see that we first have a component App that passes a prop of
loggedIn down to our Demo component. This is so we can see that
the prop value is available with getDerivedStateFromProps.

We also have a default state setup and that is available
within getDerivedStateFromProps() as well.

As mentioned, use of this component is rare. Make sure that if you
are not doing things like making API calls or modifying props or state
data from this method.

Mounting Lifecycle Hooks
The mounting phase of the component lifecycle is one that we use
quite often. There are two lifecycle hooks that get called in this stage:
render() and componentDidMount().

render()
When we introduced state in a previous chapter we began using
classes to make our components. We learned that in every class based
component we have to call render() and have it return a React element.

What we did not point out before is that render() is actually a
lifecycle hook that gets called a few times during the component
lifecycle. The first time it is called is when our component is first
loaded to the page.

There is nothing special to render() that we have not seen in action

158 React Explained

already. It is simply the function that holds the React element you
want that component to load.

class Demo extends React.Component {
render() {

return(
<div className="demo">

<p>Demo</p>
</div>

)
}

}

This example above should feel familiar. We call render, and inside of
it return our React element.

One thing that can be noted is that if we need to write JavaScript
inside of our render() function, make sure to do it before the return
statement like so:

class Demo extends React.Component {
render() {

const name = "React";
const className = "react";
return(

<div className={className}>
<p>{name}</p>

</div>
)

}
}

Other than that, you should already know how to use render. We
will see later, that render is also called again when the component gets
updates.

componentDidMount()
This lifecycle hook gets called immediately after the render() method is
called and the component is loaded to the page.

The Component Lifecycle Explained 159

Since the component is already rendered, code you execute here will
not hold up the initial rendering of the component.

One common use for this hook is to make an API call to fetch data.
Since render has been called, the API call will not hold up the loading
of the page. Once the API call has returned, if you call setState() or
use an event handler from props that calls setState() it will trigger the
component to call render() again with the new data available.

This example below shows componentDidMount() in action with
an API call to a site that we will assume returns a list of posts with
JSON.

class Posts extends React.Component {
state = {

posts: []
};

componentDidMount() {
fetch("https://site.com/api/posts")

.then(response => response.json())

.then(posts => {
this.setState({ posts: posts });

})
.catch(error => console.error(error));

}

render() {
return (

{this.state.posts.map(post => (

<li key={post.id}>
{post.title}

))}

);

}
}

The flow of data here is the render() method is called first and an empty

160 React Explained

list will appear on the page. Then componentDidMount will be called
and the fetch() call will kick off.

When the fetch returns posts, we update the posts in state with the
posts we got back. This will trigger the render() function to be called
again and the new list of posts in state show up on the page.

Since render has already been called, there will be no content
rendered from Posts until the API call has returned. This brings up an
important point.

When working with API calls or Promises in
componentDidMount() you may have to think about giving an
indication in the UI that something is happening.

In a simple refactor of the example above, we can add isLoaded to
state as a boolean value set to false by default. Once the API call returns,
we set can set it to true.

Within our render() method we can then check to see if the posts
have loaded or not and display a message “Loading Posts…” if the API
call has not returned.

class Posts extends React.Component {
state = {

isLoaded: false,
posts: []

};

componentDidMount() {
fetch("https://site.com/api/posts")

.then(response => response.json())

.then(posts => {
this.setState({

posts: posts,
isLoaded: true

});
})
.catch(error => console.error(error));

}

render() {
return (

The Component Lifecycle Explained 161

{this.state.isLoaded ? (

this.state.posts.map(post => (
<li key={post.id}>

{post.title}

))
) : (

Fetching Posts...
)}

);

}
}

In your production code you may have to consider further feedback
for users, like what happens if the posts don’t load or the request
fails. However, API calls serve as good example of how
componentDidMount might be used and some considerations to
remember.

Another time to use componentDidMount is when you have
JavaScript that depends on content already being rendered on the
page. For example, calling an external library that turns lists of images
into slideshows or vertical blog posts into a masonry grid.

Here is an example of adding Masonry to a list of posts. Since
we need the posts to be loaded before we instantiate Masonry,
componentDidMount, is the perfect hook to use to add our code.

class Posts extends React.Component {
state = {

posts: ["Post 1", "Post 2", "Post 3"]
};

componentDidMount() {
const grid = document.querySelector(".grid");
const msnry = new Masonry(grid, {

itemSelector: ".grid-item",
columnWidth: 200

});

162 React Explained

}

render() {
return (

<div className="grid">
{this.state.posts.map(post => {

return <div className="grid-item">{post}</div>;
})}

</div>
);

}
}

Notice that we are using document.querySelector() to select the grid
element from the DOM. This is not something we commonly do in
React, but it is possible within componentDidMount().

In some rare cases you may even need to select, modify or attach
event listeners to DOM elements outside of React but loaded on the
same page.

Imagine for example that our initial HTML included the following:

<!-- This div is where React is rendered -->
<div id="root"></div>

<!-- This button is not part of React -->
<button id="not-react">Non-React Button</button>

All of our React code will load inside <div id=”root”></div>. However,
we have a button on the page that is loaded outside of React.

This example below will show how you can select, modify and
attach event handlers to DOM elements outside of where React is
loaded using vanilla JavaScript DOM methods.

class Posts extends React.Component {
state= {

count: 0
};

handleNotReactClick = e => {

The Component Lifecycle Explained 163

e.preventDefault();
this.setState({ count:this.state.count+1 });

};

componentDidMount() {
const button = document.getElementById("not-react");
button.addEventListener(

"click",
this.handleNotReactClick

);
button.innerHTML = "React Controlled";

}

render() {
return <p>Count: {this.state.count}!</p>;

}
}

You can see here inside the componentDidMout() component that we
are selecting the <button> from the page with an id of “not-react”
and attaching an event listener in React to the button. The event
handler is in our React code and will update the component state. All
of this can happen once the component is rendered and we hook into
componentDidMount().

Updating Lifecycle Hooks
Whenever a prop passed into a component or any item in state within
a component change, the Update phase of React’s lifecycle kicks off.

The Updating phase will call our render() method again, as well as
another common hook componentDidMount(). There are also a few
less common methods that we will look at below as well:

• getDerivedStateFromProps()
• shouldComponentUpdate()
• getSnapshotBeforeUpdate()
• render()
• componentDidUpdate()

In general, these lifecycle hooks are helpful for when we need to run

164 React Explained

code or check for conditions based on updates that happen after the
component is initially rendered.

getDerivedStateFromProps()
We looked at this method above during the Initialization phase. Like
during the Initialization phase, getDerivedStateFromProps() in the
Updating phase executes before the component with updated props or
state is re-rendered to the page.

shouldComponentUpdate()
This hook let’s you check the updated values of props and state to see
if the component should actually be re-rendered. If the new prop or
state values to not match certain conditions it may not be worth re-
rendering the component.

This can help with performance if props or state are constantly
updating, but not all of those updates require the current component
or children components to change themselves. It is important to note
that if a component returns false in shouldComponentUpdate() then no
children components will update either.

Let’s take a look at shouldComponentUpdate() in action.

class Counter extends React.Component {
state = {

count: 0
};

componentDidMount() {
setInterval(() => {

this.setState({ count: this.state.count + 1 });
}, 500);

}

shouldComponentUpdate(nextProps, nextState) {

// Check if count is odd or even
if (nextState.count % 2) {

return false; // Does not re-render

The Component Lifecycle Explained 165

} else {
return true; // Does re-rerender

}
}

render() {
return <p>{this.state.count}<p>;

}
}

In the example above we are using componentDidMount() to start a
timer that updates the count in state by one every half a second.

In shouldComponentUpdate we receive two arguments: the new
value of props and the new value of state. We are just looking at the
state in this example.

If the new state count is divisible by 2 with a remainder, giving
us an odd number, then we will return false and not re-render the
component. Otherwise, we have an even number and we will re-
render the component.

This simple example shows how you can use conditional checks with
new prop and state values as well as current prop and state values to
determine whether a component should update.

In this example below we show how returning false from
component did render will cause children components to not re-render
as well.

class Counter extends React.Component {
state = {

count: 0
};

componentDidMount() {
setInterval(() => {

this.setState({ count: this.state.count + 1 });
}, 500);

}

shouldComponentUpdate(nextProps, nextState) {

166 React Explained

if (nextState.count % 2) {
return false;

} else {
return true;

}
}

render() {
return <Header count={this.state.count} />;

}
}

const Header = props => (
<p>{props.count}</p>

);

The only thing we have changed with this example is placing the
count in a child component. However, if you run the code you will
see that Header only re-renders if the state is even, even though the
props in Header actually change each time the count in Counter state
changes.

You will not likely need to use shouldComponentUpdate() in your
React apps, however, for performance reasons and certain use cases, it
is good to know this particular lifecycle hook exists.

getSnapshotBeforeUpdate()
This is another fringe use case lifecycle hook that works a little
differently than the others. It executes right before the component is
re-rendered and it let’s you get any DOM information from the page
and pass it to another hook, componentDidUpdate(), called right after
the component is re-rendered.

This can let you get a “before” snapshot of anything on the page,
often window or cursor or positioning information, and compare it to
the state of the page after the component is updated.

In the example below we are displaying a list of posts from state.
Every .5 seconds a new post is added to state. All of the posts are
displayed inside of a div with a fixed height of 100px with a scrollbar.

The Component Lifecycle Explained 167

Right before each new post is rendered, inside
getSnapshotBeforeUpdate(), we get the full height of the post
container, including what needs to be scrolled to see.

This value returned from getSnapshotBeforeUpdate() is then passed
as the third parameter into componentDidUpdate(), a new component
we will explore in more depth shortly. However, at this point, the new
post has been rendered so the scrollable height of the post container has
changed. We then log these two values out in componentDidUpdate()
to compare them.

class Posts extends React.Component {
state = {

posts: ["First Post"]
};

// Add a new Post to state every .5 seconds
componentDidMount() {

setInterval(() => {
this.setState({

posts: [...this.state.posts, "New Post"]
});

}, 500);
}

// Before new post is rendered from state update
// Get the current height of the post container
getSnapshotBeforeUpdate(prevProps, prevState) {

const posts = document.getElementById("posts");
return {

height: posts.scrollHeight
}

}

// After new post is rendered from state
// Get the snapshot height and compare to new height
componentDidUpdate(prevProps, prevState, snapshot) {

const posts = document.getElementById("posts");
const newHeight = posts.scrollHeight;

168 React Explained

console.log(`Prev height: ${snapshot.height}`);
console.log(`New height: ${newHeight}`);

}

render() {
return (

<div
id="posts"
style={{

overflow: "scroll",
height: "100px",
border: "1px lightgray solid"

}}
>

{this.state.posts.map(post => {post})}

</div>

);
}

}

The example above shows how any value we get inside
of getSnapshotBeforeUpdate() before a component is re-rendered can
be passed into componentDidMount(). If you have multiple values it
may make sense to return an object or array, however, you can also just
return a single value.

As we see, componentDidMount() will receive the previous props
and previous state, so do not use getSnapshotBeforeUpdate() just to
pass prop or state values to componentDidMount. It is more likely you
will get values from the page or window or something that is going to
change like that.

As mentioned, getSnapshotBeforeUpdate(), is one of our less
commonly used lifecycle hooks, but it is good to know it exists and
how to use it.

The Component Lifecycle Explained 169

render()
We have already looked at the render method in the Mounting
lifecycle phase. This method get’s called again when a change to
props or state occurs and the lifecycle methods above have already
run: getDerivedStateFromProps(), shouldComponentUpdate(), getSnapshotBeforeUpdate().

Note that render will only be called on an update if
shouldComponentUpdate() returns true, which it does by default.

We don’t really need to look at render() again too much, but now
it should make sense how a change in a prop or state value causes
a component to be re-rendered. It is thanks to the Component
Lifecycle.

componentDidUpdate()
The last of the Updating phase lifecycle hooks is
componentDidUpdate(). It gets called immediately after render()
executes due to an update.

This component can come in handy if you need to make
modifications to the DOM or components or state based on changes
that just took place. It is important to note though that calling
setState() in componentDidUpdate() will cause the Update phases to
start over again. So to avoid creating an infinite loop of updates, make
sure to wrap any setState calls inside of a conditional statement.

As we learned previously, componentDidUpdate receives three
parameters automatically: previous props, previous state, and snapshot.

Here is a familiar example where we add a new post to the page
every .5 seconds. However, this time we are doing a few more things
inside of componentDidUpdate().

class Counter extends React.Component {
state = {

posts: ["First Post"]
};

timerID;

componentDidMount() {
this.timerID = setInterval(() => {

170 React Explained

this.setState({
posts: [...this.state.posts, "New Post"]

});
}, 500);

}
componentDidUpdate(prevProps, prevState, snapshot) {

// Stop timer after 20 posts
if (this.state.posts.length >= 20) {

clearInterval(this.timerID);
}

// Scroll to bottom of postsContainer
const postsContainer = document.getElementById("posts");
postsContainer.scrollTo(0, postsContainer.scrollHeight);

}

render() {
return (

<div
id="posts"
style={{

overflow: "scroll",
height: "100px",
border: "1px lightgray solid"

}}
>

{this.state.posts.map(post => {post})}

</div>

);
}

}

The first difference here is that we are creating assigning the timer
to timerID. This allows us to stop the timer inside
of componentDidUpdate() after 20 posts appear in this.state.posts.

The second thing we do inside of componentDidUpdate() is get the

The Component Lifecycle Explained 171

new scrollable height of the posts container after the new post has been
added. Then we automatically scroll the user to the bottom of the post
container to see the latest post.

You will not use componentDidUpdate() in every component, but
it is one of the more commonly used components in React. Remember
that you can also get access to previous prop and state values, which
can be helpful for some projects.

Unmounting Lifecycle Hooks
The final stage of the Component Lifecycle involves a single hook
that get’s called right before a component is removed from the DOM.
This can be helpful for cleaning up anything allocated in memory,
like timers or event listeners added to non-React elements in the
DOM. You will not need to use this lifecycle hook often, but at times
it will be essential.

componentWillUnmout()
In this example below we create an App component with a button
to start a count down timer. The count down timer is it’s own
component and it count’s down for 3 seconds. After 3 seconds it is
removed from the page.

Inside of CountDown we call componentWillUnmout() to stop the
timer we started and log a message letting us know the component is
about to be removed.

class App extends React.Component {
state= {

displayTimer: false
};

toggleTimer=()=> {
this.setState({ displayTimer:!this.state.displayTimer });

};

render() {
return(

<div>

172 React Explained

{this.state.displayTimer ? (
<CountDown toggleTimer={this.toggleTimer} />

):(
<button onClick={this.toggleTimer}>Start Timer</button>

)}
</div>

);
}

}

class CountDown extends React.Component {
state= {

count: 3
};

timerID;

componentDidMount() {
this.timerID=setInterval(()=> {

this.setState({ count:this.state.count-1 });
}, 500);

}

componentDidUpdate() {
if(this.state.count===0) this.props.toggleTimer();

}

componentWillUnmount() {
clearInterval(this.timerID);
console.log("Timer about to unmount!");

}

render() {
return <p>Wait {this.state.count} more seconds..</p>;

}
}

You will not need to use componentWillUnmount often, but once

The Component Lifecycle Explained 173

again, it is good to know that it exists and how and when you might
need to use it.

A Review of the Component Lifecycle Hooks
We can do a lot with React just using state and props. However, to
create truly interactive and well architectured UIs, we will need to use
Component Lifecycle Hooks.

Here are the most common hooks you will likely use:

• Mounting – componentDidMount()
• Updating – componentDidUpdate()

And here is a list of the less common hooks you may need at different
times:

• Initializing – getDerivedStateFromProps()
• Updating – getDerivedStateFromProps()
• Updating – shouldComponentUpdate()
• Updating – getSnapshotBeforeUpdate()
• Unmounting – componentWillUnmout()

If all of these options seem a little overwhelming at first, just focus
on learning and practicing componentDidMount and
componentDidUpdate() and know the rest you can come back and
review when a necessary use case presents itself.

Let’s Practice!
Now that we have learned about the Component Lifecycle, let’s
practice using some of the hooks in practice.

We will focus mostly on the more common hooks, but make sure
you have a chance to use some of the less common hooks as well.

174 React Explained

17

5 Exercises with the Component Lifecycle

Now that we have learned about the Component Lifecycle, let’s do
some practice hooking into the lifecycle methods.

To get started with these exercises, open the “9-component-
lifecycle/starter” directory in your code editor and run “npm install”
and then “npm start”.

Practice #1
In this first exercise we will practice hooking into the
getDerivedStateFromProps().

Make sure <Practice1 /> is called in the “src/
index.js” ReactDOM.render().

Open up “src/Practice1.js”.
Notice the Practice1 component calls <Header /> and passes a prop

of sitename.
Inside of the Header class, call static

getDerivedStateFromProps(props, state) {}. Log out props and state
inside of that method just to test what the parameters receive. Props
should result in the sitename and state should give you the username.

Then create a new object called newState with a property of
username set to some username of your choice.

Finally, return newState inside of getDerivedStateFromProps. This
will override the previous value of state with the newState you created.

This practice exercise shows us how to use the rarely
used getDerivedStateFromProps(). Here you can get the props and
state before a component mounts to the page. Remember to always
return the existing value of state or a new one.

175

Practice #2
In this exercise we will practice making an API call inside of
componentDidMount().

Make sure <Practice2 /> is imported in “src/index.js” and called
inside of ReactDOM.render().

Open up “src/Practice2.js”.
Inside of the Practice2 component, call componentDidMount().
Then make a fetch request to the following demo API that will

return three posts:
https://dev-react-explained-api.pantheonsite.io/wp-json/wp/v2/

posts
Then take the response from that promise and call response.json().

That will give you the three posts. So with that response you can call
setState and update the value of posts with what the API gives you.

It might be a good idea to catch any errors and log them out as well.
Once the component is mounted, it will make the API request and

update the default post in state with the posts from the API.
This practice exercise helps us learn how to accomplish the common

task of making an API request within a component and updating state
with the content returned from the API call.

Practice #3
In this exercise we will practice working with the not too commonly
used shouldComponentUpdate lifecycle method to set a conditional
statement for whether a component should update or not.

In this example we will build a counter with a bar chart that counts
up to 20. However, we only want the bar chart component to update
when the count is divisible by five.

Make sure <Practice3 /> is imported in “src/index.js” and called
inside of ReactDOM.render().

Open up “src/Practice3.js”. Take a look over the code and what
happens in the browser. By default, <BarChart /> should update with
each point increase.

Then add shouldComponentUpdate(nextProps, nextState) {} in the
BarChart component.

176 React Explained

Inside shouldComponentUpdate() check to see if the new points in
props is divisible by five with a remainder like so:

if (nextProps.points % 5) {}

If this passes it means that the number is not divisible by five. If that is
the case then return false and the component will not update.

If there is no remainder then points is divisible by five and the
<BarChart /> should update, so return true.

This single conditional statement will cause the BarChat to only
animate and update when points is divisible by five.

You may not need to use this component often, but it is important to
know how to use it when you want to control whether a component
updates based on new values in props or state.

Practice #4
In this exercise we will work with the componentDidUpdate()
lifecycle hook to tell when values in props or state have changed.

To do this, we will build off of our last practice exercise and log out
details when a component has been updated.

Make sure <Practice4 /> is imported in “src/index.js” and called
inside of ReactDOM.render().

Open up “src/Practice4.js”. The code should look familiar from the
last exercise.

Inside of the Practice4 component,
call componentDidUpdate(prevProps, prevState) {}. Log out the
previous state of points (as this component does not receive props).
Also log out the current state of points (this.state.points).

Next, write a conditional statement to check if prevState.points
!== this.state.points. This will tell us whether or not, state has been
updated. If it has been updated, log out, “State Changed!”.

Now, let’s do the same thing, but with props.
Come down into the BarChart component and

call componentDidUpdate(prevProps, prevState) {} again. This
component does not have state, but it does have props, so we will work
with those.

5 Exercises with the Component Lifecycle 177

Log out points from the previous props. Also log out points from
the current props.

Finally write another conditional statement that checks if the two are
different:

if (prevProps.points !== this.props.points) {}

If this passes then the new props are different from the last time render
was called and you should log out a message “Props Changed!”

Now we have an example of checking to see if state has been
updated and props have been updated. It would also be possible to
combine the two in a component that has both state and props.

Whenever you need to hook into a component to do something
when it updates, you should now have a model for how to
use shouldComponentUpdate().

Practice #5
In our final exercise we will look how to hook
into componentWillUnmount() to take actions when a component is
about to be removed from the DOM.

In this example we modify our counter and bar chart components to
automatically increase the points every 300 milliseconds until it reaches
ten. Then we remove the bar chart component and display a message
that the goal has been reached. When the bar chart is removed from
the page we also need to stop the timer so it does not continue to count
in memory.

To setup, make sure <Practice5 /> is imported in “src/index.js” and
called inside of ReactDOM.render().

Open up “src/Practice5.js”. Take a look at the code and run it in
the browser. You should see the bar chart start counting up to ten
automatically and then the bar chart is removed. However, the timer
does not stop.

Come down to where <BarChart /> is called on line 34 and add a
stopTimer prop with a value equal to this.stopTimer.

Then come down into the BarChart component.
Call componentWillUnmount() {} inside of BarChart. Inside of that
log out the <BarChart /> is unmounting.

178 React Explained

Finally, call this.props.stopTimer(). This will cause the timer to stop
when the bar chart is no longer loaded. Now the example will count
to ten and then stop when the bar chart is removed.

This is a good example for when you might want to
use componentWillUnmount(). If a timer or other process has started
on the page that will continue to exist in memory, then it can be a
good practice to stop or remove the process when components using it
are no longer on the page.

Next Up
Now that we have learned a good deal about React and practiced using
it, we will turn our attention to building a more complex project than
the simple examples we have worked with so far.

This will allow us to pull together everything we have learned as
well as learn some new practices and helpful libraries for working with
React.

5 Exercises with the Component Lifecycle 179

PART III

A React Project
In this section of the book we will build and launch a complete project
using React and some other helpful libraries and tools.

18

Project Introduction

Now that we have learned the core functionality of React and done
some practice exercises with it, we will build a larger project from
scratch using what we have learned along with some new libraries and
techniques.

What We Will Build
The project we will build is a website that displays blog posts pulled
from a database. We will also add the ability to log in to the site to add,
edit and delete posts.

Here is a rough outline of the steps we will follow:

1. Build a static version of the site
2. Add in routing with the React Router library
3. Build a Post Form using the Quill editor library
4. Add the ability to edit and delete posts
5. Connect to a Firebase database

This project will allow us to continue to practice what we have learned
so far. We will also learn some new things along the way, including
some helpful React related libraries and tools.

Starting the Project
We will use Create React App to start our project.

Create a folder for our React project then run the following:

npx create-react-app project

183

This will spin up a new site called project that we will continue to use
for the duration of the project.

Each chapter has a starter and completed project for that chapter so
if you get stuck at any point you can compare your code with the
example project code.

If you want to start fresh at each point in the project, you can open
the appropriate folder and run npm install and npm start.

Next Steps
In the next chapter we will build a static version of our blog site. This
will involve starting with a few posts in state and then rending a list
and single page view for the posts.

184 React Explained

19

Step 1 - Listing Content From State

In this first step of our project we are going to create a basic site that
pulls some posts from state and displays them on the page.

Getting Started
You should already have a project directory we created with Create
React App in the project introduction. If you do not already have this
folder you can run the following:

npx create-react-app project
Once you have this directory created, go ahead and open it in your

code editor.
Then run the following to start the development server:
npm start
Now you should be able to follow along with the changes we will

make next.

Starting with a Fresh App Component
Open the App.js file and delete it’s contents. Then start over with the
following simple base.

import React, { Component } from "react";
import "./App.css";

class App extends Component {
render() {

return (
<div className="App">

APP HERE

185

</div>
);

}
}
export default App;

This should display APP HERE on the page and not much else. Now
we want to add in a header component for our app.

Creating the Header Component

Create a new directory in the src folder called components. Inside
of the components directory, create a new file called Header.js.
This will serve as the header and navigation for our app.

Inside of the Header component import React from “react” and then
create a functional component called Header and export it.

Have the component render a <header> element with a class of
“App-header”. Then inside of that place a with a class of
“container”.

Finally place an element with the words “Site Title” inside of
them.

import React from "react";

const Header = props => (
<header className="App-header">

<ul className="container">
Site Title

</header>

);
export default Header;

Your final code should look something like the component above.
Once you have this component created, go back to the App.js file

and import Header from “./components/Header”. Then call <Header
/> inside of the App component main <div>.

You should see the Header component load on the page.

186 React Explained

Create the Posts Component
Now we will create a new component named “Posts.js” in the
components folder.

Import React at the top and create a functional component named
Posts that deconstructs posts from props. Have Posts return an <article>
with the classes “posts” and “container” At the end of the file, make
sure that the Posts component is the default export.

import React from "react";

const Posts = ({ posts }) => (
<article className="posts container">

<h1>Posts</h1>
</article>

);
export default Posts;

Now we want to display a list item if no posts are displayed. It should
go after the <h1> and look something like this:

<article className="posts container">
<h1>Posts</h1>

{posts.length < 1 && <li key="empty">No posts yet!}

</article>

Next we want to map over the posts and display an <h2> with the title
of each post. It will look something like this:

{posts.length < 1 && <li key="empty">No posts yet!}
{posts.map(post => (

<li key={post.id}>
<h2>{post.title}</h2>

))}

Step 1 - Listing Content From State 187

Note that we have to set keys for all of the list items and we will use
the post id for that.

Calling <Posts /> from <App />
To keep our app simple for the moment, we will load some posts
into state in the <App /> component. Come into App.js and add the
following posts into state:

class App extends Component {
state = {

posts: [
{

id: 1,
title: "Hello React",
content: "Lorem."

},
{

id: 2,
title: "Hello Project",
content: "Tothe."

},
{

id: 3,
title: "Hello Blog",
content: "Ipsum."

}
]

};
render() {

// Do not change the render method yet
}

}

Next we will import the Posts component at the top of App.js and call
<Posts> after the <Header>. Make sure to set the posts props to the
props in state:

<Posts posts={this.state.posts} />

188 React Explained

Now you should see the posts listed out to the page.

Add Some Basic CSS
To make our app a little bit nicer, add the following CSS into your
App.css file.

https://github.com/zgordon/react-book/blob/master/project/blog-
step-01/src/App.css

This will give us some good default styles for the rest of our project.

Next Step
Now that we have our posts listed out and our basic app setup we are
going to add routing and single page views to our app.

Step 1 - Listing Content From State 189

20

Step 2 - Routing and Single Content Views

In order to help us handle single page views and navigating between
pages on our site we are going to introduce routing. Routing allows us
to use true URLs in our app (like app.com/page) and not worry about
writing all the event handlers to deal with this.

Rather than writing our routing from scratch, we will use the
popular React Router library. This will save us a lot of time and
introduce an us to React Router, an important library in the React
ecosystem.

If you are followed along successfully with the last chapter you can
continue on with the same code base. Or if you would like to start
fresh, you can start from the complete step 1 files and continue from
there. Make sure to run npm install if you are starting from one
of the example directories.

Setting Up React Router
The first step for setting up React Router is to install the package.
Open your project folder and run the following:

npm install react-router-dom

Now we can start up our development environment with the
following:

npm start

To use React Router in our we will open up App.js and import the
following:

191

import {
BrowserRouter as Router,
Switch,
Route

} from "react-router-dom";

This will give us the necessary components we need to setup our
routing.

Add Slugs to Posts in State
React Router wants you to have true permalinks as fall backs. To
create proper links we will want to add slugs to our posts in state.
Modify the state in the App component as follows:

posts: [
{

id:1,
slug:"hello-react",
title:"Hello React",
content:"Lorem."

},
{

id:2,
slug:"hello-project",
title:"Hello Project",
content:"Tothe."

},
{

id:3,
slug:"hello-blog",
title:"Hello Blog",
content:"Ipsum."

}
]

Now we can continue with our Router setup.

192 React Explained

Adding Router Wrapper and Routes
Next come down into our App component render return and wrap the
app div in a <Router> component like this:

<Router>
<div className="App">

{/* Don't change inside here yet */}
</div>

</Router>

This will identify our app as being managed by the React Router.
Now we want to only call our <Posts /> component when the main

route or root of our site is accessed. Remove our current <Posts />
component call and with the following:

<Switch>
<Route

exact
path="/"
render={() => <Posts posts={this.state.posts} />}

/>
</Switch>

What this does is check to see if we are on the main route of our
site (locally http://localhost:3000/) and if it is, we will call the <Posts />
component as we had previously.

Next we can setup links around our post titles to link to a single view
component.

Adding Links to Posts and Header
Open up the Posts component and import the following at the top:

import { Link } from “react-router-dom”;
React Router provides us with a <Link> component to use wherever

we want links in our apps that are tied to routes or URLs.
Next, modify the <h2> in the posts map as follows:

<h2>

Step 2 - Routing and Single Content Views 193

<Link to={`/post/${post.slug}`}>{post.title}</Link>
</h2>

The code above creates a link to a URL like /post/slug using the post
slug we set in state.

If you open up your app now and click on one of the links you
should see the URL of the site change and no content display.

We will get to creating the single post view next, but first let’s add a
link to the root of our site in the header.

Open Header.js and import Link again from react-router-dom.
Then change the list item of My Site to the following:

<Link to=”/”>My Site</Link>

This will give us a link to our homepage and the list of all posts.
If you now click on a post title it will take you to a blank page, and

clicking on the My Site link in the header will take you back to the
homepage.

Next let’s build a single post view component.

Single Post Component
Create a new file “/src/components/Post.js” with a functional
component called Post that displays an <h1> with the post title and a
div with the post content.

It should look something like this:

import React from "react";

const Post = ({ post }) => (
<article className="post container">

<h1>{post.title}</h1>
<div>{post.content}</div>

</article>
);
export default Post;

This simple component will handle loading our single post view. Now

194 React Explained

we just have to wire the Router up to load this component when the
correct URL is accessed.

Configuring Single Post Route
Come back into App.js and import Post from “./components/Post”.

Next, after the <Route> for the Posts, create a new <Router> like the
following:

<Route
path="/post/:postSlug"
render={props => {

const post = this.state.posts.find(
post => post.slug === props.match.params.postSlug

);
return <Post post={post} />;

}}
/>

This route is a little more complicated, so let’s break down what is
happening.

First, we are defining the path that will load our Post component.
The path is equal to /post/ and then the post slug.

If this path matches, render will be called. Inside of our render
setting we are checking to find the post that matches the one in the
URL. React Router automatically provides us with a prop of match,
which let’s us find the current slug from the URL with the following:

props.match.params.postSlug
Finally, once we get the correct post from state, we load that as a

prop into our <Post /> component.
Now when we test our site in the browser we should be able to click

on a post and see that post loaded. This gives us simple routing using
the basic conventions of React Router.

Setting up a 404 Page
So far the URLs in our site work pretty well. The homepage loads
Posts and if the URL is /post/slug it will load the Post component with
the specific post matching the slug in the URL.

Step 2 - Routing and Single Content Views 195

However, what happens in someone access a URL that does not
match a post? Currently our site will break in a number of different
ways.

So, let’s setup a 404 fall back page to load if an incorrect URL is
accessed.

Create a new component called “NotFound.js” in the components
folder. Setup the component to look something like this:

import React from "react";
import { Link } from "react-router-dom";

const NotFound = () => (
<article className="not-found container">

<h1>404!</h1>
<p>

Content not found. <Link to="/">Return to posts</Link>
</p>

</article>
);
export default NotFound;

Now import that NotFound component into App.js and right after the
Post route, add the following:

<Route component={NotFound} />
Here we see a simplified use of Route where we can just give it the

name of a component to load if no props need to be passed.
We will also want to update the Post route to return NotFound if

no posts match the slug accessed. Here is what the updated Post Route
should look like:

<Route
path="/post/:postSlug"
render={props => {

const post = this.state.posts.find(
post => post.slug === props.match.params.postSlug

);
if (post) return <Post post={post} />;
else return <NotFound />;

196 React Explained

}}
/>

This will ensure that if someone accesses a URL that does not exist they
will see our 404 NotFound component.

Next Steps
Now that we have routing and single page views in our app we can
move on to creating a form that will let us add new posts manually
rather than have to hard code them from state.

Step 2 - Routing and Single Content Views 197

21

Step 3 - Add Content Form

In this step we are going to create a form so that we can manually add
new posts to state. This begins our CRUD operations of Create, Read,
Update and Delete that are always helpful to know how to setup as part
of interfaces and apps.

To do this we will use a simple input field for the title and an editor
called Quill that will let us add rich text to our text field. Other rich
text editor options exist, but Quill is a popular and easy to use option.

Getting Started
If you are following along with the steps of the project from the last
chapters you can continue with your same code. Or you can start fresh
with the “/projects/step-2/” completed files and run npm install
then npm start.

Setting Up the Quill Editor
To get the Quill editor loaded we first have to install the package. To
do this run the following:
npm install react-quill
This will install the Quill editor as an easy to use React component.

Creating a PostForm Component
Create a new file in the components folder named “PostForm.js” and
import the following at the top:

import React, { Component } from "react";

199

import { Redirect } from "react-router-dom";
import Quill from "react-quill";

import 'react-quill/dist/quill.snow.css';

This will give us React, a Redirect component from React Router and
the Quill editor component. It also imports the needed CSS for the
Quill editor to work properly.

Next create a PostForm class based component like this:

class PostForm extends Component {
render() {

return (
<form className="container">

<h1>Add a New Post</h1>
{* Title Fields Here *}
{* Quill Editor Here *}
<p>

<button type="submit">Save</button>
</p>

</form>
);

}
}
export default PostForm;

We will come back and add more to this form shortly. But first, let’s
add a new route to our app as well as a link in the header that links to
the post form.

Adding Route and Link to Post Form
To start off, let’s open the Header.js component and add in a new link
to our our post edit form.

Add the following link to after the My Site link:

<Link to="/new">New Post</Link>

200 React Explained

Now we need to come into our App.js and add a new <Route> for the
link we created to /new.

After the Route to our single post view, add the following route:

<Route
exact
path="/new"
component={NewPostForm}

/>

We will come back and edit this further later, but this should let us click
on “New Post” in the header and see the new post form load.

Now we will build the rest of the form.

Building the Post Edit Form Fields
Now let’s come back into PostForm.js and add the form elements for
the post title and content.

To start, let’s add in title and content into our PostForm component
state:

state: {
title: "",
content: "",

}

Next we can add in an input field and label for the title:

<p>
<label htmlFor="form-title">Title:</label>

<input

id="form-title"
value={this.state.title}
onChange={e => this.setState({ title: e.target.value })}

/>
</p>

Step 3 - Add Content Form 201

This will let us add a title for our post as well as update the title in state
whenever the value of the field is changed.

Below that we can add the code for our Quill editor. That will look
like this:

<p>
<label htmlFor="form-content">Content:</label>

</p>
<Quill

onChange={(content, delta, source, editor) => {
this.setState({ content: editor.getContents() });

}}
/>

The Quill editor field is slightly more complicated to setup than the
normal input field. We can see that Quill makes available a number of
variables by default into the onChange event handler.

We can use the editor variable passed in along with the
getContents() method to get the to get the contents from the Quill
editor and set it to the content in state.

Again, this code is specific to Quill and saves Deltas, not normal
HTML as the content. Later we will have to go back and update
our single page view to display those saved Deltas rather than normal
HTML.

The final field we need to add is the submit button. It should look
something like this:

<p>
<button type="submit">Save</button>

</p>

Now when you click on “New Post” in the header you should see our
completed post form. The final step is to hook up the event handlers
to actually save the post.

Adding the Post Form Event Handler
Within our PostForm component, let’s write an event handler called
handleAddNewPost. The first thing the handler should do is prevent

202 React Explained

the event default from happening, which will prevent the form from
submitting and refreshing the page.

Next we want to write a conditional statement to check if they have
entered in a title. If there is not a title, we can display an alert message
saying a title is needed.

If there is a title, then we want to create a new post object and
assign it the title and content values from state. Just to test, let’s start
off logging this post to the screen.

So, we should have an event handler in our PostForm component
that looks something like this for the moment:

handlePostForm = e => {
e.preventDefault();
if (this.state.title) {

const post = {
title: this.state.title,
content: this.state.content

};
console.log(post);

} else {
alert("Title required");

}
};

Before this will work, we need to modify our form element to call the
function on submit. That should look like this:

<form className="container" onSubmit={this.handlePostForm}>

Now when you enter in a title and content into the form you should
see a post object logged out in the console. The title should be the text
you entered, while the content will be a Delta representation of the
content you entered.

Saving a New Post
Our handlePostForm will currently log out our new post object, but
we want to save it back into the state for our main App component so
it can be used throughout the entire app.

Step 3 - Add Content Form 203

We will add the function to save a new post to state in our <App />
component. Then we will pass it down as a prop into our <PostForm
/> component.

In our App component, create a method addNewPost. This will
take post as a parameter. Then we have to do a few minor actions
like creating a new ID for our post as well as a slug. We will add these
two our properties to our post and then finally add this new post the
existing list of posts.

Our final method should look something like the following:

addNewPost = post => {
post.id = this.state.posts.length + 1;
post.slug = encodeURIComponent(

post.title
.toLowerCase()
.split(" ")
.join("-")

);
this.setState({

posts: [...this.state.posts, post]
});

};

We can see here in the first line that we set a new ID by simply getting
the length of the current array of posts and add one. This is not a
production ready solution, but it will do for now. Later we will get
our IDs set automatically via a database.

Next we get a slug for our post by taking the title and replacing any
spaces with a hyphen and finally URL encoding it. Again, this may
not be 100% bullet proof, but it does a solid job getting what we need
for our app here.

Finally we set the state for posts as equal to the current array of posts
plus our new one. As you can see we are using array destructuring to
accomplish this.

Now that we have our addNewPost function, we can modify our
new post form route to look like the following:

<Route

204 React Explained

exact
path="/new"
render={() => <PostForm addNewPost={this.addNewPost} />}

/>

With our addNewPost function passed into our PostForm
component as a prop, we can come back into PostForm.js and call this
function from our handlePostForm function.

So our handlePostForm should now look like this:

handlePostForm = e => {
e.preventDefault();
if (this.state.title) {

const post = {
title: this.state.title,
content: this.state.content

};
this.props.addNewPost(post);

} else {
alert("Title required");

}
};

Now if we fill out the form and press submit, nothing on the page
changes. But, if after submitting the form, you click on “My Site” to
show all of the posts, you will see that the post has been added.

Redirecting Form After Submit
With the app we are building, when someone submits the form, we
want to redirect back to the home page so they can see the new post
listed.

We will accomplish this using a React Router <Redirect />
component along with a value in state called “saved” that we set to false
by default and then switch to true after the form has been submitted.

To start, add a value for saved to state and set it to false by default.

state = {
title: "",

Step 3 - Add Content Form 205

content: "",
saved: false

};

Now after we call this.props.addNewPost(post) in our handlePostForm
handler we want to also set the state of saved to true:

this.setState({ saved: true });

The final step in this approach is to set a conditional statement inside
our render method. If saved is true we will redirect back home and if
not we will return our form.

render() {
if (this.state.saved === true) {

return <Redirect to="/" />;
}
return (

// Leave return unchanged
)

}

This gives us a pattern where we have a value in state set to false until
the form gets submitted. Then once the form is submitted the value
switches to false and the <Redirect /> component automatically get’s
called sending the user back to the homepage.

This completes our new post form, but we still need to get the Deltas
from the Quill editor to display in the single Post component.

Displaying Deltas in Single Post Component
For help displaying deltas, go ahead and stop your production server
and import the following library:
npm install quill-delta-to-html
Then start your server back up again with npm start.
Next go into your Post.js file and import the following right below

importing React:

import { QuillDeltaToHtmlConverter } from "quill-delta-to-html";

206 React Explained

Then modify the Post component to the following:

const Post = ({ post }) => {
const converter = new QuillDeltaToHtmlConverter(post.content.ops, {});
const contentHTML = converter.convert();

return (
<article className="post container">

<h1>{post.title}</h1>
<div

className="content"
dangerouslySetInnerHTML={{ __html: contentHTML }}

/>
</article>

);
};

Here we are passing our Delta post content
into QuillDeltaToHtmlConverter(), then we need to call
.convert() on this content. This will give us HTML in contentHTML.

When displaying HTML from a variable into a React app, we have
to use a special property called dangerouslySetInnerHTML.

So rather than having something like this:

<div>
{contentHTML}

</div>

We actually have to do something like this:

<div
dangerouslySetInnerHTML={{ __html: contentHTML }}

/>

This is to remind you that you are doing a potentially dangerous action
of letting raw HTML run on the page.

However, with these modifications to our Post component we can
now display Deltas from our Quill editor.

Since this is complete, our last step will be to set our initial state of

Step 3 - Add Content Form 207

posts in App.js to an empty array and add all of our posts manually via
our form.

Next Steps
The next major step for our project is to add the ability to edit and
delete our posts. However, first we are going to add the ability to
display messages when we have saved, updated or deleted our content.

So, let’s take a look at how to add flash messages to our project next.

208 React Explained

22

Step 4 - Flash Messages

Flash Messages in an app that let a user know an action has taken
place. In traditional apps with page refreshes, flash messages would be
available after an action was submitted even if it caused a page refresh.

In our single page app design our flash messages will appear for a few
seconds and then disappear using updates to state and setTimeout calls.

Getting Started
If you have successfully followed along with the previous steps you can
continue with the same code.

If you would like to start fresh, you can use the completed files from
the last step and run npm install and npm start.

The Message Component
Our message component will contain a few predetermined messages
that we can display by updating the state in our main App component.
We will also use a simple timer and some CSS to hide the message after
it has displayed a few moments.

To start, create a new Message.js file in the components directory.
Import React and then setup a functional component called Message
that destructures type from props.

We also want a messages object in our component that has the
various messages we can display. In the render method we will display
the appropriate message based on the prop passed.

Here is what the completed component will look like:

import React from "react";

209

const Message = ({ type }) => {
const messages = {

saved: "Post has been saved!",
updated: "Post has been updated!",
deleted: "Post has been deleted."

};
return (

<div className={`App-message ${type}`}>
<p className="container">

{messages[type]}
</p>

</div>
);

};
export default Message;

We can see here that we will look for a prop called type that is set
to either “saved.” “updated,” or “deleted.” We can later add additional
messages using the same pattern as above.

In the render() method we display the type prop as a class in the
wrapper div for styling purposes. We then display the specific message
we want using the bracket format of calling object properties.

If you have not seen this pattern before messages[type], it is
how we can call an object property when the name of the property is a
variable rather than something we can hard code.

Now that we have our message component created, let’s look at how
to integrate it into our app.

Conditionally Rendering Messages
At the top of our App.js file import the Message component.

Then, in the App component, add message to state with a default
value of null.

class App extends Component {
state = {

posts: [],
message: null

};

210 React Explained

// The rest stays the same for now
}

Now we can write some conditional code to only render the Message
component if this.state.message is not equal to null.

Come down into the App render() method and add the following
code right under the <Header />.

{this.state.message && <Message type={this.state.message} />}

This will cause the Message component to render and receive the
message type as props.

Next we will display a saved message when we add a new post.

Displaying the Saved Message
To display a message when a post has saved we will come into our
addNewPost function in our App component.

Look for where we call this.setState in addNewPost and update it
to not just update the posts, but also set message in state to “saved.”

this.setState({
posts: [...this.state.posts, post],
message: "saved"

});

This will cause our saved message to display. However, it will not go
disappear unless we set message in state back to null. To accomplish
this, we will call this.setState inside of a setTimeout function.

This will go right at the end of our addNewPost function:

this.setState({
posts: [...this.state.posts, post],
message: "saved"

});
setTimeout(() => {

this.setState({ message: null });
}, 1600);

Step 4 - Flash Messages 211

Now, when we save a post it will set the message state to “saved” to
display our saved message. Then after 1600 milliseconds it will change
the message in state back to null, making the Message component
unmount.

Possible Further Modifications
We can use this same pattern when displaying other messages and then
hiding them. It would also be possible to build a Message component
that includes the setTimeout call inside of it, but it would be a little
more complex.

There are also several Flash Message packages that you can easily add
an use in your app rather than build them yourself.

The Final Code
If you get stuck along the way or would like to see the completed code,
you can access it via the course repo here:

https://github.com/zgordon/react-book/project/blog-step-04

Next Steps
Now that we have messages setup and working in our app, let’s move
on to looking at how to edit and delete posts.

212 React Explained

23

Step 5 - Updating Content

In the last chapter we looked at how to add flash message into our app.
Now we will turn our attention back to working with updating posts
once they have been added.

This will involve a few steps. First we want to add an “Edit” link to
each of our posts. Clicking on edit will take us to a new Route, where
we will reuse our PostForm form, but this time populating it with the
data from the post we want to edit.

Finally, clicking save in the edit form will save the updated post
back to our App state, redirect us back to view all posts, and display an
“updated” message.

Getting Started
If you have successfully followed along with the previous steps you can
continue with the same code.

If you would like to start fresh, you can use the completed files from
the last step and run npm install and npm start.

Adding Edit Link to Posts
First we will open our Posts component in “src/components/Posts.js”
and add an edit link.

At the top of the file, import the following after you import React.

import { Link } from "react-router-dom";

Then after the <h2> with a link to the post, we will add the following
code

213

<p>
<Link to={`/edit/${post.slug}`}>Edit</Link>

</p>

This will give us a link very similar to the link to view a single post,
except it will go to a new route: edit/post-slug.

Now we need to create this new route in our main App component.

Adding Edit Route
Inside of the App.js file, come down to the <Route> for the new post
form. After that route, add a new route as follows:

<Route
path="/edit/:postSlug"
render={props => {

const post = this.state.posts.find(
post => post.slug === props.match.params.postSlug

);
if (post) {

return <PostForm post={post} />;
} else {

return <Redirect to="/" />;
}

}}
/>

Let’s break down what is happening here.
First we set the path to “/edit/:postSlug.” This will load when

someone clicks on an post edit link.
Then on our Route render method we want to get the slug from the

URL using props.match.params.postSlug, which React Router provides
us.

Then we do a simple check to see if that post exists. If that post does
exist we will load the <PostForm />. If the post does not exist, someone
likely tried to visit an edit link for a post that does not exist and we will
just redirect back to the homepage to prevent any errors.

However, if we click on our edit link now, we will have a few
problems.

214 React Explained

First, we need to pass an event handler into the form responsible
for updating the post in the App state. Then we need to modify our
PostForm component to load the post object for editing.

Let’s start with writing the function to update our modified post.

The updatePost Function
Inside our App component we already have an addNewPost function.
Right after that, we want to add an updatePost function that looks
something like this:

updatePost = post => {
post.slug = this.getNewSlugFromTitle(post.title);
const index = this.state.posts.findIndex(

p => p.id === post.id
);
const posts = this.state.posts

.slice(0, index)

.concat(this.state.posts.slice(index + 1));
const newPosts = [...posts, post].sort((a, b) =>

a.id - b.id
);
this.setState({

posts: newPosts,
message: "updated"

});
setTimeout(() => {

this.setState({ message: null });
}, 1600);

};

There is nothing complicated React wise going on here, but there is a
bit of Vanilla JavaScript that is worth unpacking.

First, we need to take the following code from our addNewPost
function and break it out into it’s own function called
getNewSlugFromTitle.

So, find the following code in our addNewPost form:

post.slug = encodeURIComponent(

Step 5 - Updating Content 215

post.title
.toLowerCase()
.split(" ")
.join("-")

);

Replace that code with the following line:

post.slug = this.getNewSlugFromTitle(post.title);

And right before the addNewPost function create the following
function:

getNewSlugFromTitle = title =>
encodeURIComponent(

title
.toLowerCase()
.split(" ")
.join("-")

);

Now we can call this function in our addNewPost and updatePost
functions.

The next code we see in our updatePost function is some code that
will find the index for the first post that has the same slug that we have
passed in the URL.

const index = this.state.posts.findIndex(p => p.id === post.id);

We then use that index to remove the post we just edited from the list
of posts in state and then add the new post back into the array.

const posts = this.state.posts
.slice(0, index)
.concat(this.state.posts.slice(index + 1));

const newPosts = [...posts, post].sort((a, b) =>
a.id - b.id);

We also take the chance to sort the posts based on their IDs so that

216 React Explained

the edited post will still display in the same order as before. Otherwise
edited posts would be added to the end of the array of posts in state
whenever we edited one.

Finally, we set the posts in state equal to our new updated lists of
posts. (We are also setting an updated message to display).

this.setState({
posts: newPosts ,
message: "update",

});

This pattern of finding an object within an array and making edits to it
is not uncommon in JavaScript, so you may need to write code like this
in the future. Just remember, most of this code is not React specific,
but rather plain old vanilla JavaScript.

The last lines of code should look familiar from the addNewPost
function. They simply set a timer to set message in state to null after
1600 milliseconds to remove the message component.

setTimeout(() => {
this.setState({ message: null });

}, 1600);

Now that our updatePost function is complete, let’s pass it as a prop
into our PostForm component in our edit post route.

Come down into our Route for our edit post form and add the
following prop:

<Route
path="/edit/:postSlug"
render={props => {

const post = this.state.posts.find(
post => post.slug === props.match.params.postSlug

);
if (post) {

return <PostForm updatePost={this.updatePost} post={post} />;
} else {

return <Redirect to="/" />;
}

Step 5 - Updating Content 217

}}
/>

Now, when we click to edit a post, the PostForm will receive the post
to update as well as the function to call to make the update.

Passing Empty Post into New Post Form
If our PostForm receives a post object when we are editing but no
post when we are adding a new post, it will add some unnecessary
complexity to the component.

Instead, what we can do is pass in an empty post object into the
PostForm when we are adding a new post. Then the PostForm
component can always expect to receive a post to edit.

Find the Route for our new post form and modify to pass in an
empty post object like so:

<Route
exact
path="/new"
render={() => (

<PostForm
addNewPost={this.addNewPost}
post={{ id: 0, slug: "", title: "", content: "" }}

/>
)}

/>

This addition brings up an interesting React related point. If a
component does not know what props it will receive, it requires
additional conditional logic. If a component can always rely on
receiving specific props, less conditional logic is necessary within the
component. Neither approach is necessarily correct, but in general it
is nice to have simpler components when possible.

Loading the Post into PostForm
Now our PostForm component will always receive a post as a prop.

218 React Explained

When acting as a new post form, it will receive an empty post object.
When acting as an edit form, it will receive the post to edit.

In both cases, we can use the same form component to add new posts
or edit existing ones.

Open the file for the PostForm.
First, we are going to make the following changes to our state:

state = {
post: {

id: this.props.post.id,
slug: this.props.post.slug,
title: this.props.post.title,
content: this.props.post.content

},
saved: false

};

Next we can set default values on our form elements and modify the
onChange handles since we modified the format of our state.

Find input field for the post title and change it to the following:

<input
defaultValue={this.props.title}
id="form-title"
value={this.state.post.title}
onChange={e =>

this.setState({
post: {

...this.state.post,
title: e.target.value

}
})

}
/>

Now we get the title from props and set it as the defaultValue for our
input field. Then we set the value of the form based on the value of the
post.title in state.

In the onChange method we set the state of post equal to the past

Step 5 - Updating Content 219

value of the post in state and then override the post.title with value
from our form.

We have to do this because there is no way to set just one property
of an object in state. Using destructuring though will give us exactly
what we need.

The modifications to the Quill editor component are similar, but do
not require a value property to be set.

Make the following changes to the Quill component onChange
method:

<Quill
defaultValue={this.state.post.content}
onChange={(content, delta, source, editor) => {

this.setState({
post: {

...this.state.post,
content: editor.getContents()

}
});

}}
/>

We should now have an empty post loaded into the PostForm
component when it is used as a new post form and have the post to
edit loaded into the form when the component is being used as an edit
form.

While this seems to work, there is one potential problem here that
has to deal with setting state from props in React.

Setting State from Props
Setting state from props in React is a handy method to get an initial
value of state from props, but it has a major problem.

Setting state from props will only happen the first time the
component is loaded. If the props change in the future, those new prop
values will not be set to state.

To demonstrate this problem, do the following:

1. Add a new post

220 React Explained

2. Click to edit the post
3. Click on “New Post”

You will see that when you click “New Post” it still displays the values
of the post we wanted to edit.

To resolve this problem, we are going to run very similar code on
componentDidMount(). Then we can test to see if the value of props
has changed, and if it has we will update the state from props once
again.

Add the following componentDidMoutnt method to your PostForm
component:

componentDidUpdate(prevProps, prevState) {
if (prevProps.post.id !== this.props.post.id) {

this.setState({
post: {

id: this.props.post.id,
slug: this.props.post.slug,
title: this.props.post.title,
content: this.props.post.content

}
});

}
}

Now, if we repeat the same process we did before, when we click on
“New Post” it will trigger the props.post.id value to change from the
edit post object ID to zero, which is the value of the ID we are hard
coding when we pass an empty post object into our new post form.

This code is a little repetitive, and demonstrates some of the
problems you can have when setting the initial value of state from
props as well as a work around to avoid the problem if props might
ever need to change and re-update state.

Modifying the handlePostForm Handler
Now that we have our form loading properly let’s write our last
little bit of code that will determine whether to call addNewPost or
updatePost.

Step 5 - Updating Content 221

Inside of our handlePostForm we will add a simple conditional check
to see if updatePost is passed down in props. If it is then we can call
updatePost and if not we will call addNewPost.

Here is what our modified handlePostForm should look like now:

handlePostForm = e => {
e.preventDefault();
if (this.state.post.title) {

if (this.props.updatePost) {
this.props.updatePost(this.state.post);

} else {
this.props.addNewPost(this.state.post);

}
this.setState({ saved: true });

} else {
alert("Title required");

}
};

And there we have it. We have modified a single form component to
work for both adding new posts and editing existing ones.

The Final Code
If you got stuck along the way or would just like to look over the final,
completed code, you can access the completed code here:

https://github.com/zgordon/react-book/tree/master/project/
step-05-update

Next Steps
Now that we have the ability to add and edit posts, we will look at how
to delete posts next. This will complete our core CRUD functionality
involving posts in state. Then we can look at how to make our state
persistent with local storage and a remote database.

222 React Explained

24

Step 6 - Deleting Content

We now come to the end of our CRUD setup for our app. In this step
we will look at how to add a delete post link to our list of posts that will
handle removing a post from state.

Unlike with our adding and editing posts, we will not actually need
a route to handle deleting posts and instead can use a simple onClick
event handler.

However, similar to the add and edit functionality, we will place the
function for actually deleting a post from state in the App component
where our main state is handled.

Getting Started
If you have successfully followed along with the previous steps you can
continue with the same code.

If you would like to start fresh, you can use the completed files from
the last step and run npm install and npm start.

Creating the deletePost Function
Start off in main App component and scroll down to right after the
updatePost function.

Add a deletePost function that takes post as a parameter and then
checks a window.confirm modal to verify the user wants to delete the
post. It will look something like this:

deletePost = post => {
if (window.confirm("Delete this post?")) {
}

};

223

Inside of this we will filter through the posts in state to get all of the
posts that do not have the id of the post we want to delete.

const posts = this.state.posts.filter(p => p.id !== post.id);

We can then update the state with these filtered posts and set a deleted
message to appear.

The final code will look something like this:

deletePost = post => {
if (window.confirm("Delete this post?")) {

const posts = this.state.posts.filter(p => p.id !== post.id);
this.setState({ posts, message: "deleted" });
setTimeout(() => {

this.setState({ message: null });
}, 1600);

}
};

Now we can pass down deletePost into our Posts component and call it
directly from there where we have access to the post we want to delete.

Come down into the Route that calls the <Posts /> component and
pass in deletePost like this:

<Posts posts={this.state.posts} deletePost={this.deletePost} />

Now we can call this function from within our post listing component.

Adding the Delete Post Link
As mentioned, we will create a link in our Posts component, next to
the Edit link that will call deletePost.

However, we will not actually use an anchor tag <a> element for
this. Instead we will use a button styled as a link.

React suggests that you do not use links unless they can actually
link somewhere. In our app we are using the React Router <Link>
components when we want to create links somewhere.

Our delete link does not actually go anywhere. We could create a
route just to handle deleting our post, but this is not necessary.

224 React Explained

What we really want is an action to take place, but have the interface
for calling the action look like a link. However, in these cases in React
we will actually use buttons styled as links.

In the CSS you received, buttons will receive similar styling to links
when they have a “linkLink” class added:

button.linkLike {
background:inherit;
border: none;
color: #26738D;
font-size: inherit;
text-decoration: underline;

}

button.linkLike:hover {
cursor: pointer;

}

Open the “src/components/Posts.js” file and add the following inside
the <p> tag containing the Edit link:

<p>
<Link to={`/edit/${post.slug}`}>Edit</Link>
{" | "}
<button className="linkLike" onClick={() => deletePost(post)}>

Delete
</button>

</p>

The first thing we see here is an interesting oddity about adding extra
spaces inside JSX. We need to put them inside of a JavaScript string,
which in turn gets wrapped in curly braces {” | “}. If we just used the
pipe character | on it’s own, we would not see any spaces appear before
and after it even if we left spaces in our source code.

Next we see our button with the linkLike class added and an onClick
event handler that directly calls deletePost. Since we already have
access to the post via props we can pass it directly

Remember that deletePost is passed down through props. So to

Step 6 - Deleting Content 225

prevent from having to call it like props.deletePost we can destructure
it when we receive the props.

const Posts = ({ posts, deletePost }) => (
// Component code

);

Now we should see a Delete button styled as a link that appears next to
the Edit link.

When you click on the Delete button, a confirm window pops up in
the browser. This is a easy safeguard to make sure that if someone did
not mean to delete that post, when they click cancel or no, the post will
not be deleted. If they click confirm the conditional check we wrote
earlier will return true and the post should be deleted. We should also
see a deleted message appear.

Final Code
As with all the steps, ff you got stuck along the way or would like to
just look over the final code for this step you can access it here:

https://github.com/zgordon/react-book/tree/master/project/
step-06-delete

Next Steps
We have finally completed our basic CRUD operations! However,
saving everything in state like we have done is fragil and you have
probably grown tired of having to keep adding new posts each time
the page gets refreshed.

So, over the course of the remaining steps we will explore ways to
make our state persistent using local storage and a database. First, let’s
look at how to easily add local storage support for our state. We have
already done this in a practice exercise, so it should seem familiar.

226 React Explained

25

Step 7 - Persistent State with Local Storage

As you have noticed, the state for our app resets every time the page
refreshes. In this chapter we will look at a simple solution to help make
our state stay persistent between page loads (and even closing and re-
opening the browser).

Rather than manually writing the code for saving our state in local
storage, we will use the React Simple Storage package.

Getting Setup
If you have been successfully coding along with the past project steps,
you can simply continue with the same code base.

Or if you would like to start fresh and follow along, you can grab
the completed files from the last step and run npm install and npm
start.

Setting Up Local Storage
To start, we want to install the React Simple Storage package. Make
sure your React development server is stopped and then run the
following:

npm install react-simple-storage
This will get us the package. Then in our App.js file we can add the

following import right after we import from React Router:

import SimpleStorage from "react-simple-storage";

To complete the configuration is quite simple, especially since the only
state we need to make persistent is the main App component state.

To complete the setup, come down right between the <div

227

className=”App”> and the <Header /> in our App render(). Add the
following:

<div className="App">
<SimpleStorage parent={this} />
<Header />

This is all the Simple Storage package needs to track our App
component state and save it to local storage.

Now, when you add a new post and refresh the page or even close
the tab then access the page again, we will see the post still present.

Final Code
If you have any problems with this step or would just like to look over
the final code, you can find it here:

https://github.com/zgordon/react-book/tree/master/project/
step-07-localstorage

Next Steps
Saving our data to local storage is handy, but our app still has a few
major limitations that make it not quite ready for launch.

First, anyone can add a post. It would be a good idea to add some
authentication to our app so that we only let authorized users edit
content.

Also, every new visitor to the site will see no posts loaded, since
they are all saved in state. We will need a way to save our posts so
that anyone accessing our sites will see a live view of what posts are
published.

To solve both of these problems we will use the Firebase platform
from Google, which includes both authentication and real time
databases.

228 React Explained

26

Step 8 - Authenticating with a Firebase
Database

This will be a major step in our application. We are going to setup
user authentication for our app that will accept an email and password
and check if it matches any users we have setup.

This way we can hide the New Post link from the header and the
Edit and Delete options from our Posts if a user has not logged in to
the site yet.

Rather than build all of this ourselves, we will use the Google
Firebase platform. Along with a lot of other features, Firebase includes
an interface to manage users and ready to use functions to handle each
step of the authentication process.

Getting Started
To get started you can either use your code from the previous step or
you can start with the completed files from the last step available in the
course repo here:

https://github.com/zgordon/react-book/tree/master/project/
step-07-localstorage

Setting Up a Firebase Project
To begin, you will need a free Firebase account. Head over
to https://firebase.google.com and sign up for a free account.

Once you have logged in, you will see an option to start a new
project. Give your project a name like “React Blog Demo.” You may
also have to accept some terms and conditions. Once you do, click to
create the new project.

229

After Firebase has created your new project, you can continue to the
project dashboard.

Under Develop, go to Authentication and click to Set up sign-in
method. Edit the Email/Password Sign-in method to enable it and
click save.

Finally, click on the Users tab under Authentication and Add a user.
Enter in your own email and a secure password since we will be
ultimately launch our site live to a production server.

Connecting Firebase to React
As you can see, setting up Firebase for authentication is quite simple.
Connecting our React app to Firebase is a few more steps.

First, we want to create a file in our app that will save the basic
information we need to connect to Firebase. None of this information
is particularly private or secure so we do not have to worry about it
being bundled with our client side JavaScript.

I will add a note here, that in general you want to make sure any
authentication methods you use with React in the browser do not
accidentally make any secure information public.

To get started, make sure your development server is stopped and
import the firebase package from NPM.

npm install firebase
Restart your server and then in the “src” folder of our project, add a

new file firebase.js. Import the following at the top of the file:
import * as firebase from “firebase/app”;

import “firebase/auth”;
import “firebase/database”;

This will import a few things. First, we get the main firebase library
needed to initialize anything working with Firebase. Then we import
the authentication and database libraries specifically as well.

Below the imports, add the following empty configuration object,
firebase initialization and exporting of firebase as well:

const config = {

};

230 React Explained

firebase.initializeApp(config);
export default firebase;

Before we can go any further we need to get the specific configurations
for the Firebase project we just created.

In your project Dashboard, you should see a gear icon next to
Project Overview that will let you access your Project settings.

There you should see an option to “Add Firebase to your web app.”
In the current design it looks something like this:

SCREENSHOT
Now, we want to take all of the properties from that var config that

Firebase gives us and copy and paste them into our firebase.js file.
The final code for this example project will look different than yours:

import * as firebase from "firebase/app";
import "firebase/auth";
import "firebase/database";

const config = {
apiKey: "AIzaSyBabjCCC5wUxZgB4pru-nmBXM1BEIyszEw",
authDomain: "react-explained-blog-demo.firebaseapp.com",
databaseURL: "https://react-explained-blog-demo.firebaseio.com",
projectId: "react-explained-blog-demo",
storageBucket: "react-explained-blog-demo.appspot.com",
messagingSenderId: "983332576012"

};
firebase.initializeApp(config);
export default firebase;

You will have to setup your config to include the configurations
specifically for your project. The configurations above will not work
for you. This is just meant as an example of what your final firebase.js
file should look like.

With our Firebase project setup, a user added, and our firebase.js
configuration file complete, we can build ourselves a Login form and
Logout button that we hook into Firebase and our own App state.

Step 8 - Authenticating with a Firebase Database 231

Creating a Login Component
Create a new file “src/components/Login.js” with a class based
component called Login.

We will want to have state for the email and password as well as an
event handler to handle the form submission.

Our initial Login.js file should look like this:

import React, { Component } from "react";

export default class Login extends Component {
state = {

email: "",
password: ""

};
handleLogin = e => {

e.preventDefault();
console.log(this.state.email, this.state.password);

};
render() {

return (
<form className="container" name="login" onSubmit={this.handleLogin}>
</form>

);
}

}

We can see here the email and password set to empty strings by
default. Then our handleLogin function is called when the login form
submits.

Now let’s add in labels and input fields to let the user enter in a
username and password. There is nothing particular special about this
React code below, it should make sense to you at this point.

<form className="container" name="login" onSubmit={this.handleLogin}>
<p>

<label htmlFor="email">Email:</label>
<input

type="email"
onChange={e => this.setState({ email: e.target.value })}

232 React Explained

/>
</p>
<p>

<label htmlFor="password">Password:</label>
<input

type="password"
onChange={e => this.setState({ password: e.target.value })}

/>
</p>

</form>

Finally we can add a submit button to our form. We will do one
special little thing with this and set the button to disabled until there
is a value for both the email and password. We can do this using the
disabled button property.

Place your button right before the closing form tag:

<p>
<button

type="submit"
disabled={!this.state.email && !this.state.password}

>
Login

</button>
</p>

</form>

This component should now log out the email and password to the
console on form submission. But we have no way to access our Login
form.

So, let’s go back into our App component and add a Route for /login
that loads our login form. We will also add a login link to our header
to make it easy to access.

Adding Route and Link for Login
Back in the App.js file, import your Login component at the top of the
file.

Step 8 - Authenticating with a Firebase Database 233

Then add a Route with an exact path of “/login” right before our
Route to the new post form.

We can start off for now with a very simple Route like this:

<Route
exact
path="/login"
component={Login}

/>

We will come back later and add to this, but for now, let’s just add a
link to the login page in our Header component.

Inside of “src/components/Header.js” add a login link to the list of
links:

<Link to="/login">Login</Link>

You may notice that now the New Post and Login links appear in the
menu. Obviously this will have to change, but for the moment, let’s
just test that we can access the login page and log out the email and
password from the form.

Click on the Login link in your browser and open the web
inspector. Enter in an email and password and click Login. You
should the email and password log out in the console.

Now we can move on to making the actual firebase authentication
call to check if the email and password match any that we setup in our
Firebase project dashboard.

We will also to our state whether a user is currently authenticated.
This will allow us add conditional checks throughout our app to
determine whether to hide or show certain components.

Authenticating with Firebase via Email and Password
Authenticating with Firebase is actually a pretty simple process. In our
App.js file we want to first import the firebase file we setup like so:

import firebase from “./firebase”;

234 React Explained

Then we want to create a new function inside of our App
component called onLogin() that accepts two parameters: email and
password. Inside of this we will handle the firebase authentication and
then pass onLogin() down to our Login component as a prop to be
called there.

To authenticate with firebase, we first call firebase.auth(). This will
give us access to a number of different methods for authentication,
including signInWithEmailAndPassword(), which takes an email and
password and returns a promise with the authenticated user or an error
statement of what went wrong.

Here is what a simple onLogin function would look like:

onLogin = (email, password) => {
firebase

.auth()

.signInWithEmailAndPassword(email, password)

.then(user => console.log("Logged in")

.catch(error => console.error(error));
};

Let’s finish wiring this up by passing onLogin down into the Login
component in our Routes.

<Route
exact
path="/login"
render={() =>

<Login onLogin={this.onLogin} />
}

/>

Now within our Login component, inside of the handleLogin function
we wrote previously, we can call onLogin with the email and password
from the form.

Here is what our updated handleLogin function will now look:

handleLogin = e => {
e.preventDefault();

Step 8 - Authenticating with a Firebase Database 235

this.props.onLogin(this.state.email, this.state.password);
};

This will take the email and password the user submits and pass them
back up into signInWithEmailAndPassword().

A note here that the email and password you enter to authenticate
must match the email and password you setup in Firebase when setting
up the project.

Now, logging in to the site should authenticate us and log out
“Logged in” to the console. But we do not have a way to remember
that the user is authenticated.

So next we need to add to state a way to keep track of whether a user
has logged in already or not.

Adding isAuthenticated to State
Let’s add a new property to our App state called “isAuthenticated” with
a default value of false.

state = {
isAuthenticated: false,
posts: [],
message: null

};

Now inside of our onLogin function we can set the state of
isAuthenticated to true when we are sure the user has authenticated.

onLogin = (email, password) => {
firebase

.auth()

.signInWithEmailAndPassword(email, password)

.then(user => {
this.setState({ isAuthenticated: true });

})
.catch(error => console.error(error));

};

With this information in state we can add some conditional statements

236 React Explained

throughout our app to hide certain functionality if a user is not
authenticated.

Then we will also go back and create a Logout link in the header as
well.

Checking for Authentication Throughout App
In this section we are going to go back through our app and make the
following changes:

• Hide the Login link if authenticated
• Show the New Post link only if authenticated
• Show the Edit and Delete links only if authenticated

This will give our app a better flow based on whether a user has logged
in or not.

Updating the Header
To start, let’s pass isAuthenticated as a prop into our Header
component from App.js

<Router>
<div className="App">

<SimpleStorage parent={this} />
<Header

isAuthenticated={this.state.isAuthenticated}
/>
{this.state.message && <Message type={this.state.message} />}

Now in the Header component itself we can write a conditional check
to see if the user has authenticated:

const Header = props => (
<header className="App-header">

<ul className="container">

<Link to="/">My Site</Link>

{props.authenticated ? (

Step 8 - Authenticating with a Firebase Database 237

<Link to="/new">New Post</Link>

) : (

<Link to="/login">Login</Link>

)}

</header>

);

When you view the site now you should see the Login link if not
authenticated and the New Post link if you are.

Updating the Edit and Delete Links
Now that we have updated our header navigation, let’s turn our
attention to the Edit and Delete links in our Posts component.

First, pass isAuthenticated down into Posts in our App.js Route:

<Route
exact
path="/"
render={() => (

<Posts
isAuthenticated={this.state.isAuthenticated}
posts={this.state.posts}

/>
)}

/>

This will let us update our Posts component with the following
conditional:

{posts.map(post => (
<li key={post.id}>

<h2>
<Link to={`/post/${post.slug}`}>{post.title}</Link>

</h2>

238 React Explained

{isAuthenticated && (
<p>

<Link to={`/edit/${post.slug}`}>Edit</Link>
{" | "}
<button

className="linkLike"
onClick={e => {

e.preventDefault();
deletePost(post);

}}
>

Delete
</button>

</p>
)}

))}

Don’t forget in order to call isAuthenticated directly like this you will
need to destructure it from props like so:

const Posts = ({ posts, deletePost, isAuthenticated }) => (
When you test your app now you should see the Edit and Button

elements only visible if the user is authenticated.

Writing an onLogout Function
We now have a clear difference in our app between being logged in
and logged out. Let’s complete the process now with a Logout link
to terminate our authentication with Firebase and update the state of
isAuthenticated back to false.

We will start off in our App component, adding an
onLogout function right after our onLogin function.

The onLogout function will call a special firebase.auth()
method called signOut(), which will automatically stop the current
user’s authentication with Firebase.

It looks like this in action:

onLogout = () => {
firebase

Step 8 - Authenticating with a Firebase Database 239

.auth()

.signOut()

.then(() => {
this.setState({ isAuthenticated: false });

})
.catch(error => console.error(error));

};

We can see here that after Firebase signs the user out we are able to set
isAuthenticated back to false.

With this setup we can now pass onLogout down into our <Header
/> component and call the function directly from within our Header.

<div className="App">
<SimpleStorage parent={this} />
<Header

isAuthenticated={this.state.isAuthenticated}
onLogout={this.onLogout}

/>
{this.state.message && <Message type={this.state.message} />}

With this function written and passed as our props, let’s turn our
attention to creating the Logout link.

Creating a Logout Link
Actually, we are going to create a Logout button and style it as a link.
The reason is similar to the Delete button we created.

Semantically we want an action to occur (logging out) but don’t
actually have a page we need to send the user to in order for us to
execute this action and update our app accordingly.

So in our Header.js file, let’s update our navigation with the
following button:

{isAuthenticated ? (
<>

<Link to="/new">New Post</Link>

240 React Explained

<button

className="linkLike"
onClick={e => {

e.preventDefault();
onLogout();

}}
>

Logout
</button>

</>

) : (

<Link to="/login">Login</Link>

)}

Note that we had to add a Fragment wrapper around the New Post
and Logout list item, because this expression must return a single React
element, not two.

Also remember that in order to call onLogout directly like this, we
must destructure it from the props when we setup our component:

const Header = ({ isAuthenticated, onLogout }) => (

sdfsdf
NOTE: Disabling React Developer tools.
NOTE: It is recommended when dealing with authentication to use

SSL (https) on your local, staging and production environments.

Setting Up Firebase

• Sign up for free at https://firebase.google.com/
• Come into Console
• Setup new project – Name it, default configurations, Accept

terms
• Come into Database > Create new Database
• Start in Locked Mode

Step 8 - Authenticating with a Firebase Database 241

• Go into Authentication and set the sign-in method to Email/
Password – set it to enabled (other settings can remain off as
long as email/password is enabled)

• Now go to Authentication > Users and add a user with an
email and password

Setting Up the App

• Create a Login.js component
• Add authenticated to state in App.js
• Import and call Login when not authenticated and going to

/login
• Pass authenticated into Header component and call login

Setting Up Firebase and the App

• Install Firebase npm i firebase
• Setup a new file “./firebase.js”
• Import firebase app, auth and database into firebase.js
• Get config information from project overview (graphic)
• Make config a const
• call firebase.initializeApp(config)
• export default firebase
• In App.js import firebase from “./firebase.js”
• In App component, create an onLogin function that accepts

username and password
• Setup firebase authentication with username and password
• If authenticated, set state.authenticated to true
• Create an onLogout function and call auth().signOut()
• Then set authenticated to false
• Pass onLogin down into <Login />
• Pass authenticated and onLogout into <Header />
• In Login.js handleLogin, call this.props.onLogin and pass in

the email and password
• Open Header.js and add a list item with a link to “/” that will

call props.onLogout on click (will need to wrap two list
items in a fragment)

• Pass authenticated into Posts
• Only show Edit | Delete links if authenticated

242 React Explained

• Make sure “/new” “/edit” routes are only accessible if
authenticated

Step 8 - Authenticating with a Firebase Database 243

27

Step 9 - Adding, Editing and Deleting w
Firebase

First?

• Manually add a post to Firebase
• App componentDidMount(), get posts from database
• Push the post to new state

• Update addNewPost to push to firebase
• Update updatePost
• Update Posts.js key to post.key instead of post.id
• Update PostForm to check for key
• Update App to send null key to when calling new form
• Update delete post

Also

• Update .find with .filter in loading – Mention it?

245

28

Step 10 - Deploying The Project

• Netifly Deply
• https://www.netlify.com/blog/2016/07/22/deploy-react-

apps-in-less-than-30-seconds/

247

Taking React Further [TODO]

A Review of What We’ve Learned
In this book we have learned many of the foundations of the User
Interface library…

This is where you can add appendices or other back matter.

249

	About React Explained
	About the OSTraining Book Club
	We Often Update This Book
	Are You an Author?
	Are You a Teacher?
	Sponsor an OSTraining Book
	We Want to Hear From You!
	The Legal Details
	React Explained
	Contents
	React Explained
	Preparing to React
	The JavaScript You Should Know for React Explained
	5 Exercises in Vanilla JavaScript
	Developer Tools for React Explained
	5 Exercises with Developer Tools
	A High Level Overview of React
	React Explained
	An Introduction to React Elements and Components
	5 Exercises in Writing React With Elements and Components
	An Introduction to JSX
	5 Exercises in Writing React With JSX
	An Introduction to Creating React Apps
	5 Exercises in Creating a React App
	Props in React Explained
	5 Exercises in Working with Props
	State in React Explained
	5 Exercises in Working with State
	The Component Lifecycle Explained
	5 Exercises with the Component Lifecycle
	A React Project
	Project Introduction
	Step 1 - Listing Content From State
	Step 2 - Routing and Single Content Views
	Step 3 - Add Content Form
	Step 4 - Flash Messages
	Step 5 - Updating Content
	Step 6 - Deleting Content
	Step 7 - Persistent State with Local Storage
	Step 8 - Authenticating with a Firebase Database
	Step 9 - Adding, Editing and Deleting w Firebase
	Step 10 - Deploying The Project
	Taking React Further [TODO]

